Ahmed, A., D. Burke, and A. Yu. In-vitro measurement of static pressure distribution in synovial joints—part II: retropatellar surface. J. Biomech. Eng. 105:226–236, 1983.
Akbarshahi, M., J. W. Fernandez, A. G. Schache, and M. G. Pandy. Subject-specific evaluation of patellofemoral joint biomechanics during functional activity. Med. Eng. Phys. 36:1122–1133, 2014.
Amis, A., P. Firer, J. Mountney, W. Senavongse, and N. Thomas. Anatomy and biomechanics of the medial patellofemoral ligament. Knee 10:215–220, 2003.
Argatov, I. Mathematical modeling of linear viscoelastic impact: application to drop impact testing of articular cartilage. Tribol. Int. 63:213–225, 2013.
Baldwin, J. L., and C. K. House. Anatomic dimensions of the patella measured during total knee arthroplasty. J. Arthroplast. 20:250–257, 2005.
Carter, D. R., G. S. Beaupre, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res. 427:69–77, 2004.
Chen, Y.-J., I. Scher, and C. M. Powers. Quantification of patellofemoral joint reaction forces during functional activities using a subject-specific three-dimensional model. J. Appl. Biomech. 26:415–423, 2010.
Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.
Dorn, T. W., A. G. Schache, and M. G. Pandy. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 215:1944–1956, 2012.
Elahi, S., S. Cahue, D. T. Felson, L. Engelman, and L. Sharma. The association between varus–valgus alignment and patellofemoral osteoarthritis. Arthr. Rheum.: Off. J. Am. Coll. Rheumatol. 43:1874–1880, 2000.
Elias, J. J., M. S. Kirkpatrick, A. Saranathan, S. Mani, L. G. Smith, and M. J. Tanaka. Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study. Clin. Biomech. 26:841–846, 2011.
Elias, J. J., D. R. Wilson, R. Adamson, and A. J. Cosgarea. Evaluation of a computational model used to predict the patellofemoral contact pressure distribution. J. Biomech. 37:295–302, 2004.
Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.
Gollehon, D. L., P. Torzilli, and R. Warren. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J. Bone Joint Surg. Am. Vol. 69:233–242, 1987.
Goudakos, I. G., C. Konig, P. B. Schottle, W. R. Taylor, N. B. Singh, I. Roberts, F. Streitparth, G. N. Duda, and M. O. Heller. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading. J. Biomech. 42:2590–2596, 2009.
Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging. J. Orthop. Res. 37:615–630, 2019.
Gu, W., and M. G. Pandy. Direct validation of human knee-joint contact mechanics derived from subject-specific finite-element models of the tibiofemoral and patellofemoral joints. J. Biomech. Eng. 142:071001, 2020.
Halonen, K. S., M. E. Mononen, J. S. Jurvelin, J. Toyras, A. Klodowski, J. P. Kulmala, and R. K. Korhonen. Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait. J. Biomech. Eng. 138:071002, 2016.
Hashemi, J., N. Chandrashekar, B. Gill, B. D. Beynnon, J. R. Slauterbeck, R. C. Schutt, Jr, H. Mansouri, and E. Dabezies. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J. Bone Joint Surg. Am. Vol. 90:2724, 2008.
Hirokawa, S. Three-dimensional mathematical model analysis of the patellofemoral joint. J. Biomech. 24:659–671, 1991.
Hu, J., Z. Chen, H. Xin, Q. Zhang, and Z. Jin. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle. Proc. Inst. Mech. Eng. Part H 232:508–519, 2018.
Huberti, H., and W. Hayes. Patellofemoral contact pressures. The influence of Q-angle and tendofemoral contact. J. Bone Joint Surg. Am. Vol. 66:715–724, 1984.
Hungerford, D. S., and M. Barry. Biomechanics of the patellofemoral joint. Clin. Orthop. Relat. Res. 144:9–15, 1979.
Kobayashi, K., A. Hosseini, M. Sakamoto, W. Qi, H. E. Rubash, and G. Li. In vivo kinematics of the extensor mechanism of the knee during deep flexion. J. Biomech. Eng. 135:081002, 2013.
Lenhart, R. L., J. Kaiser, C. R. Smith, and D. G. Thelen. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann. Biomed. Eng. 43:2675–2685, 2015.
Lenhart, R. L., C. R. Smith, M. F. Vignos, J. Kaiser, B. C. Heiderscheit, and D. G. Thelen. Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running. J. Biomech. 48:2871–2878, 2015.
Li, G., L. E. DeFrate, S. Zayontz, S. E. Park, and T. J. Gill. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. J. Orthop. Res. 22:801–806, 2004.
Lin, Y. C., J. P. Walter, S. A. Banks, M. G. Pandy, and B. J. Fregly. Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43:945–952, 2010.
Lin, Y. C., J. P. Walter, and M. G. Pandy. Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Ann. Biomed. Eng. 46:1216–1227, 2018.
Liu, F., M. Kozanek, A. Hosseini, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43:658–665, 2010.
Mason, J. J., F. Leszko, T. Johnson, and R. D. Komistek. Patellofemoral joint forces. J. Biomech. 41:2337–2348, 2008.
Millard, M., T. Uchida, A. Seth, and S. L. Delp. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135:021005, 2013.
Pieper S., B. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC kit: LTK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium, pp. 698–701, 2006.
Ramappa, A. J., M. Apreleva, F. R. Harrold, P. G. Fitzgibbons, D. R. Wilson, and T. J. Gill. The effects of medialization and anteromedialization of the tibial tubercle on patellofemoral mechanics and kinematics. Am. J. Sports Med. 34:749–756, 2006.
Rothermich, M. A., N. R. Glaviano, J. Li, and J. M. Hart. Patellofemoral pain: Epidemiology, pathophysiology, and treatment options. Clin. Sports Med. 34:313–327, 2015.
Shelburne, K. B., M. G. Pandy, F. C. Anderson, and M. R. Torry. Pattern of anterior cruciate ligament force in normal walking. J. Biomech. 37:797–805, 2004.
Shelburne, K. B., M. R. Torry, and M. G. Pandy. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 37:1948–1956, 2005.
Smith, T. O., N. J. Hunt, and S. T. Donell. The reliability and validity of the Q-angle: a systematic review. Knee Surg. Sports Traumatol. Arthrosc. 16:1068–1079, 2008.
Sritharan, P., Y. C. Lin, and M. G. Pandy. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30:1586–1595, 2012.
Tecklenburg, K., D. Dejour, C. Hoser, and C. Fink. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg. Sports Traumatol. Arthrosc. 14:235–240, 2006.
Thelen, D. G., F. C. Anderson, and S. L. Delp. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.
Thomeer, L. T., F. T. Sheehan, and J. N. Jackson. Normalized patellofemoral joint reaction force is greater in individuals with patellofemoral pain. J. Biomech. 60:238–242, 2017.
Umberger, B. R. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J. Biomech. 41:2575–2580, 2008.
Van Kampen, A., and R. Huiskes. The three-dimensional tracking pattern of the human patella. J. Orthop. Res. 8:372–382, 1990.
Waligora, A. C., N. A. Johanson, and B. E. Hirsch. Clinical anatomy of the quadriceps femoris and extensor apparatus of the knee. Clin. Orthop. Relat. Res. 467:3297–3306, 2009.
Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.
Zavatsky, A. B., P. T. Oppold, and A. J. Price. Simultaneous in vitro measurement of patellofemoral kinematics and forces. J. Biomech. Eng. 126:351–356, 2004.
Zhao, D., S. A. Banks, K. H. Mitchell, D. D. D’Lima, C. W. Colwell, Jr, and B. J. Fregly. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J. Orthop. Res. 25:789–797, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4