A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02646-2 below:

Six-Degree-of-Freedom Tibiofemoral and Patellofemoral Joint Motion During Activities of Daily Living

References
  1. Andriacchi, T., E. Alexander, M. Toney, C. Dyrby, and J. Sum. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J. Biomech. Eng. 120:743–749, 1998.

    Article  CAS  Google Scholar 

  2. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin. Orthop. Relat. Res. 1976–2007(454):81–88, 2007.

    Article  Google Scholar 

  3. Churchill, D. L., S. J. Incavo, C. C. Johnson, and B. D. Beynnon. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin. Orthop. Relat. Res. 356:111–118, 1998.

    Article  Google Scholar 

  4. DeFrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.

    Article  Google Scholar 

  5. Dyrby, C. O., and T. P. Andriacchi. Secondary motions of the knee during weight bearing and non-weight bearing activities. J. Orthop. Res. 22:794–800, 2004.

    Article  Google Scholar 

  6. Farrokhi, S., B. Meholic, W. N. Chuang, J. A. Gustafson, G. K. Fitzgerald, and S. Tashman. Altered frontal and transverse plane tibiofemoral kinematics and patellofemoral malalignments during downhill gait in patients with mixed knee osteoarthritis. J. Biomech. 48:1707–1712, 2015.

    Article  Google Scholar 

  7. Freeman, M. A., and V. Pinskerova. The movement of the normal tibio-femoral joint. J. Biomech. 38:197–208, 2005.

    Article  CAS  Google Scholar 

  8. Gale, T., and W. Anderst. Asymmetry in healthy adult knee kinematics revealed through biplane radiography of the full gait cycle. J. Orthop. Res. 37:609–614, 2019.

    Article  CAS  Google Scholar 

  9. Goodfellow, J., and J. O’Connor. The mechanics of the knee and prosthesis design. J. Bone Jt. Surg. Br. 60:358–369, 1978.

    Article  Google Scholar 

  10. Gray, H. A., S. Guan, and M. G. Pandy. Accuracy of mobile biplane X-ray imaging in measuring 6-degree-of-freedom patellofemoral kinematics during overground gait. J. Biomech. 57:152–156, 2017.

    Article  Google Scholar 

  11. Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging. J. Orthop. Res. 37:615–630, 2019.

    Article  Google Scholar 

  12. Gray, H. A., S. Guan, T. J. Young, M. M. Dowsey, P. F. Choong, and M. G. Pandy. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J. Orthop. Res. 38:1753–1768, 2020.

    Article  Google Scholar 

  13. Guan, S., H. A. Gray, F. Keynejad, and M. G. Pandy. Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans. Med. Imaging 35:326–336, 2016.

    Article  Google Scholar 

  14. Hirokawa, S., M. Solomonow, Y. Lu, Z.-P. Lou, and R. D’Ambrosia. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am. J. Sports Med 20:299–306, 1992.

    Article  CAS  Google Scholar 

  15. Hollister, A. M., S. Jatana, A. K. Singh, W. W. Sullivan, and A. G. Lupichuk. The axes of rotation of the knee. Clin. Orthop. Relat. Res. 1976–2007(290):259–268, 1993.

    Google Scholar 

  16. Huberti, H. H., and W. C. Hayes. Contact pressures in chondromalacia patellae and the effects of capsular reconstructive procedures. J. Orthop. Res. 6:499–508, 1988.

    Article  CAS  Google Scholar 

  17. Kefala, V., A. J. Cyr, M. D. Harris, D. R. Hume, B. S. Davidson, R. H. Kim, and K. B. Shelburne. Assessment of knee kinematics in older adults using high-speed stereo radiography. Med. Sci. Sports Exerc. 49:2260–2267, 2017.

    Article  Google Scholar 

  18. Koh, T. J., M. D. Grabiner, and R. J. De Swart. In vivo tracking of the human patella. J. Biomech. 25:637–643, 1992.

    Article  CAS  Google Scholar 

  19. Koo, S., and T. P. Andriacchi. The knee joint center of rotation is predominantly on the lateral side during normal walking. J. Biomech. 41:1269–1273, 2008.

    Article  Google Scholar 

  20. Koo, Y.-J., and S. Koo. Three-dimensional kinematic coupling of the healthy knee during treadmill walking. J. Biomech. Eng. 141:081012, 2019.

    Article  Google Scholar 

  21. Kozanek, M., A. Hosseini, F. Liu, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J. Biomech. 42:1877–1884, 2009.

    Article  Google Scholar 

  22. Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, 3rd, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.

    Article  CAS  Google Scholar 

  23. Li, G., T. Rudy, M. Sakane, A. Kanamori, C. Ma, and S.-Y. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J. Biomech. 32:395–400, 1999.

    Article  CAS  Google Scholar 

  24. Li, J.-S., A. Hosseini, L. Cancre, N. Ryan, H. E. Rubash, and G. Li. Kinematic characteristics of the tibiofemoral joint during a step-up activity. Gait Posture 38:712–716, 2013.

    Article  Google Scholar 

  25. Liu, F., M. Kozanek, A. Hosseini, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43:658–665, 2010.

    Article  Google Scholar 

  26. Lu, T.-W., T.-Y. Tsai, M.-Y. Kuo, H.-C. Hsu, and H.-L. Chen. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med. Eng. Phys. 30:1004–1012, 2008.

    Article  CAS  Google Scholar 

  27. Moore, D. S., W. I. Notz, and M. A. Fligner. The Basic Practice of Statistics. New York: Macmillan Higher Education, 2015.

    Google Scholar 

  28. Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: clinical motions and patellofemoral indices. J. Orthop. Res. 26:1067–1074, 2008.

    Article  Google Scholar 

  29. Pieper, S., B. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 698–701.

  30. Reinschmidt, C., A. Van Den Bogert, A. Lundberg, B. Nigg, N. Murphy, A. Stacoff, and A. Stano. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109, 1997.

    Article  Google Scholar 

  31. Scott, G., M. A. Imam, A. Eifert, M. Freeman, V. Pinskerova, R. Field, J. Skinner, and S. A. Banks. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Jt. Res. 5:80–86, 2016.

    Article  CAS  Google Scholar 

  32. Suzuki, T., A. Hosseini, J. S. Li, T. J. Gill, IV, and G. Li. In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending. J. Biomech. 45:2432–2437, 2012.

    Article  Google Scholar 

  33. Van de Velde, S. K., T. J. Gill, and G. Li. Dual fluoroscopic analysis of the posterior cruciate ligament-deficient patellofemoral joint during lunge. Med. Sci. Sports Exerc. 41:1198–1205, 2009.

    Article  Google Scholar 

  34. Varadarajan, K. M., A. A. Freiberg, T. J. Gill, H. E. Rubash, and G. Li. Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion. J. Biomech. Eng. 132:061008, 2010.

    Article  Google Scholar 

  35. Wilson, D., J. Feikes, and J. O’Connor. Ligaments and articular contact guide passive knee flexion. J. Biomech. 31:1127–1136, 1998.

    Article  CAS  Google Scholar 

  36. Wilson, D. R., J. Feikes, A. Zavatsky, and J. O’Connor. The components of passive knee movement are coupled to flexion angle. J. Biomech. 33:465–473, 2000.

    Article  CAS  Google Scholar 

  37. Winter, D., and H. Yack. EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 67:402–411, 1987.

    Article  CAS  Google Scholar 

  38. Yamokoski, J. D., and S. A. Banks. Does close proximity robot motion tracking alter gait? Gait Posture 34:508–513, 2011.

    Article  Google Scholar 

  39. Zavatsky, A. B., D. J. Beard, and J. J. O’Connor. Cruciate ligament loading during isometric muscle contractions: a theoretical basis for rehabilitation. Am. J. Sports Med. 22:418–423, 1994.

    Article  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4