Andriacchi, T., E. Alexander, M. Toney, C. Dyrby, and J. Sum. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J. Biomech. Eng. 120:743–749, 1998.
Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin. Orthop. Relat. Res. 1976–2007(454):81–88, 2007.
Churchill, D. L., S. J. Incavo, C. C. Johnson, and B. D. Beynnon. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin. Orthop. Relat. Res. 356:111–118, 1998.
DeFrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.
Dyrby, C. O., and T. P. Andriacchi. Secondary motions of the knee during weight bearing and non-weight bearing activities. J. Orthop. Res. 22:794–800, 2004.
Farrokhi, S., B. Meholic, W. N. Chuang, J. A. Gustafson, G. K. Fitzgerald, and S. Tashman. Altered frontal and transverse plane tibiofemoral kinematics and patellofemoral malalignments during downhill gait in patients with mixed knee osteoarthritis. J. Biomech. 48:1707–1712, 2015.
Freeman, M. A., and V. Pinskerova. The movement of the normal tibio-femoral joint. J. Biomech. 38:197–208, 2005.
Gale, T., and W. Anderst. Asymmetry in healthy adult knee kinematics revealed through biplane radiography of the full gait cycle. J. Orthop. Res. 37:609–614, 2019.
Goodfellow, J., and J. O’Connor. The mechanics of the knee and prosthesis design. J. Bone Jt. Surg. Br. 60:358–369, 1978.
Gray, H. A., S. Guan, and M. G. Pandy. Accuracy of mobile biplane X-ray imaging in measuring 6-degree-of-freedom patellofemoral kinematics during overground gait. J. Biomech. 57:152–156, 2017.
Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging. J. Orthop. Res. 37:615–630, 2019.
Gray, H. A., S. Guan, T. J. Young, M. M. Dowsey, P. F. Choong, and M. G. Pandy. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J. Orthop. Res. 38:1753–1768, 2020.
Guan, S., H. A. Gray, F. Keynejad, and M. G. Pandy. Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans. Med. Imaging 35:326–336, 2016.
Hirokawa, S., M. Solomonow, Y. Lu, Z.-P. Lou, and R. D’Ambrosia. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am. J. Sports Med 20:299–306, 1992.
Hollister, A. M., S. Jatana, A. K. Singh, W. W. Sullivan, and A. G. Lupichuk. The axes of rotation of the knee. Clin. Orthop. Relat. Res. 1976–2007(290):259–268, 1993.
Huberti, H. H., and W. C. Hayes. Contact pressures in chondromalacia patellae and the effects of capsular reconstructive procedures. J. Orthop. Res. 6:499–508, 1988.
Kefala, V., A. J. Cyr, M. D. Harris, D. R. Hume, B. S. Davidson, R. H. Kim, and K. B. Shelburne. Assessment of knee kinematics in older adults using high-speed stereo radiography. Med. Sci. Sports Exerc. 49:2260–2267, 2017.
Koh, T. J., M. D. Grabiner, and R. J. De Swart. In vivo tracking of the human patella. J. Biomech. 25:637–643, 1992.
Koo, S., and T. P. Andriacchi. The knee joint center of rotation is predominantly on the lateral side during normal walking. J. Biomech. 41:1269–1273, 2008.
Koo, Y.-J., and S. Koo. Three-dimensional kinematic coupling of the healthy knee during treadmill walking. J. Biomech. Eng. 141:081012, 2019.
Kozanek, M., A. Hosseini, F. Liu, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J. Biomech. 42:1877–1884, 2009.
Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, 3rd, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.
Li, G., T. Rudy, M. Sakane, A. Kanamori, C. Ma, and S.-Y. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J. Biomech. 32:395–400, 1999.
Li, J.-S., A. Hosseini, L. Cancre, N. Ryan, H. E. Rubash, and G. Li. Kinematic characteristics of the tibiofemoral joint during a step-up activity. Gait Posture 38:712–716, 2013.
Liu, F., M. Kozanek, A. Hosseini, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43:658–665, 2010.
Lu, T.-W., T.-Y. Tsai, M.-Y. Kuo, H.-C. Hsu, and H.-L. Chen. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med. Eng. Phys. 30:1004–1012, 2008.
Moore, D. S., W. I. Notz, and M. A. Fligner. The Basic Practice of Statistics. New York: Macmillan Higher Education, 2015.
Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: clinical motions and patellofemoral indices. J. Orthop. Res. 26:1067–1074, 2008.
Pieper, S., B. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 698–701.
Reinschmidt, C., A. Van Den Bogert, A. Lundberg, B. Nigg, N. Murphy, A. Stacoff, and A. Stano. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109, 1997.
Scott, G., M. A. Imam, A. Eifert, M. Freeman, V. Pinskerova, R. Field, J. Skinner, and S. A. Banks. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Jt. Res. 5:80–86, 2016.
Suzuki, T., A. Hosseini, J. S. Li, T. J. Gill, IV, and G. Li. In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending. J. Biomech. 45:2432–2437, 2012.
Van de Velde, S. K., T. J. Gill, and G. Li. Dual fluoroscopic analysis of the posterior cruciate ligament-deficient patellofemoral joint during lunge. Med. Sci. Sports Exerc. 41:1198–1205, 2009.
Varadarajan, K. M., A. A. Freiberg, T. J. Gill, H. E. Rubash, and G. Li. Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion. J. Biomech. Eng. 132:061008, 2010.
Wilson, D., J. Feikes, and J. O’Connor. Ligaments and articular contact guide passive knee flexion. J. Biomech. 31:1127–1136, 1998.
Wilson, D. R., J. Feikes, A. Zavatsky, and J. O’Connor. The components of passive knee movement are coupled to flexion angle. J. Biomech. 33:465–473, 2000.
Winter, D., and H. Yack. EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 67:402–411, 1987.
Yamokoski, J. D., and S. A. Banks. Does close proximity robot motion tracking alter gait? Gait Posture 34:508–513, 2011.
Zavatsky, A. B., D. J. Beard, and J. J. O’Connor. Cruciate ligament loading during isometric muscle contractions: a theoretical basis for rehabilitation. Am. J. Sports Med. 22:418–423, 1994.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4