Azeloglu, E. U., and K. D. Costa. Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy. Am. J. Physiol-Heart Circ. Physiol. 298:H853–H860, 2010.
Bark, D., B. Johnson, D. Garrity, and L. Dasi. Valveless pumping mechanics of the embryonic heart during cardiac looping: pressure and flow through micro-PIV. J. Biomech. 50:50–55, 2017.
Bartman, T., E. C. Walsh, K. K. Wen, M. McKane, J. H. Ren, J. Alexander, P. A. Rubenstein, and D. Y. R. Stainier. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2:673–681, 2004.
Costa, K. D., A. J. Sim, and F. C. P. Yin. Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J. Biomech. Eng. 128:176–184, 2005.
Delfino, A., N. Stergiopulos, J. Moore, Jr, and J.-J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.
Demiray, H., and R. P. Vito. A layered cylindrical shell model for an aorta. Int. J. Eng. Sci. 29:47–54, 1991.
Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol-Heart Circ. Physiol. 283:H2650–H2659, 2002.
Ebert, A., G. Hume, K. Warren, N. Cook, C. Burns, M. Mohideen, G. Siegal, D. Yelon, M. Fishman, and D. Garrity. Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc. Natl. Acad. Sci. 102:17705–17710, 2005.
Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H.-Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.
Glickman N. S., D. Yelon. Cardiac development in zebrafish: coordination of form and function. In: Seminars in Cell & Developmental Biology Elsevier, pp. 507–513, 2002.
Haack, T., and S. Abdelilah-Seyfried. The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development 143:373–386, 2016.
Hamburger, V., and H. L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.
Herrmann, C., J. Wray, F. Travers, and T. Barman. Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31:12227–12232, 1992.
Holzapfel, A. G. Nonlinear Solid Mechanics. New York: Wiley, 2000.
Hove, J. R., R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003.
Hu, N., and E. Clark. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ. Res. 65:1665–1670, 1989.
Hu, N., and B. B. Keller. Relationship of simultaneous atrial and ventricular pressures in stage 16-27 chick embryos. Am. J. Physiol-Heart Circ. Physiol. 269:H1359–H1362, 1995.
Hu, N., H. J. Yost, and E. B. Clark. Cardiac morphology and blood pressure in the adult zebrafish. Anatom. Record 264:1–12, 2001.
Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2013.
Ingber, D. E., and I. Tensegrity. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173, 2003.
Janmey, P. A., and C. A. McCulloch. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34, 2007.
Johnson, B., D. Bark, Jr, I. Van Herck, D. Garrity, and L. P. Dasi. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech. Model. Mechanobiol. 521:1–11, 2015.
Kuznetsova, T. G., M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov. Atomic force microscopy probing of cell elasticity. Micron 38:824–833, 2007.
Lammerding, J., R. D. Kamm, and R. T. Lee. Mechanotransduction in cardiac myocytes. Ann. N. Y. Acad. Sci. 1015:53–70, 2004.
Majkut, S., T. Idema, J. Swift, C. Krieger, A. Liu, and D. E. Discher. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr. Biol. 23:2434–2439, 2013.
Makarenko, I., C. Opitz, M. Leake, C. Neagoe, M. Kulke, J. Gwathmey, F. Del Monte, R. Hajjar, and W. Linke. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ. Res. 95:708–716, 2004.
Männer, J. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anatom. Record 259:248–262, 2000.
McCain, M. L., and K. K. Parker. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflügers Arch. Eur. J. Physiol. 462:89, 2011.
Press, C. S. H. L. Danieau’s Solution (30×). New York: Cold Spring Harbor Protocols, 2011.
Samarel, A. M. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am. J. Physioly-Heart Circ. Physiol. 289:H2291–H2301, 2005.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671, 2012.
Schroder, E. A., K. Tobita, J. P. Tinney, J. K. Foldes, and B. B. Keller. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ. Res. 91:353–359, 2002.
Sedmera, D., T. Pexieder, V. Rychterova, N. Hu, and E. B. Clark. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anatom. Record 254:238–252, 1999.
Shi, Y., J. Yao, G. Xu, and L. A. Taber. Bending of the looping heart: differential growth revisited. J. Biomech. Eng. 136:081002, 2014.
Stainier, D., B. M. Weinstein, H. R. Detrich, L. I. Zon, and M. C. Fishman. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150, 1995.
Tobita, K., E. A. Schroder, J. P. Tinney, J. B. Garrison, and B. B. Keller. Regional passive ventricular stress-strain relations during development of altered loads in the chick embryo. Am. J. Physiol-Heart Circ. Physiol. 282:H2386–H2396, 2002.
Tracqui, P., and J. Ohayon. Transmission of mechanical stresses within the cytoskeleton of adherent cells: a theoretical analysis based on a multi-component cell model. Acta. Biotheor. 52:323–341, 2004.
Wang, T.-W., and M. Spector. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 5:2371–2384, 2009.
Weinstein, B. M., D. L. Stemple, W. Driever, and M. C. Fishman. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat. Med. 1:1143–1147, 1995.
Westerfield, M. The Zebrafish Book. Eugene, OR: University of Oregon Press, 1995.
Yao, J., V. D. Varner, L. L. Brilli, J. M. Young, L. A. Taber, and R. Perucchio. Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart. J. Biomech. Eng. 134:024502, 2012.
Yeoh, O. H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66:754–771, 1993.
Zamir, E. A., V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 31:1327–1336, 2003.
Zamir, E. A., and L. A. Taber. Material properties and residual stress in the stage 12 chick heart during cardiac looping. J. Biomech. Eng. 126:823–830, 2004.
Zamir, E. A., and L. A. Taber. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. 126:276–283, 2004.
Zhang, R.-Z., A. A. Gashev, D. C. Zawieja, and M. J. Davis. Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. Am J. Physiol-Heart Circ Physiol. 292:H1943–H1952, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4