A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02611-z below:

Robotic Rehabilitation in Spinal Cord Injury: A Pilot Study on End-Effectors and Neurophysiological Outcomes

References
  1. Alcobendas-Maestro, M., A. Esclarín-Ruz, R. M. Casado-López, A. Muñoz-González, G. Pérez-Mateos, E. González-Valdizán, and J. L. Martín. Lokomat robotic-assisted versus overground traing within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil. Neural Repair 26(9):1058–1063, 2012.

    PubMed  Google Scholar 

  2. Anderson, K. D., M. E. Acuff, B. G. Arp, D. Backus, S. Chun, K. Fisher, et al. United States (US) multi-center study to assess the validity and reliability of the Spinal Cord Independence Measure (SCIM III). Spinal Cord 49(8):880–885, 2011.

    CAS  PubMed  Google Scholar 

  3. Astolfi, L., H. Bakardjian, F. Cincotti, D. Mattia, M. G. Marciani, F. De Vico Fallani, A. Colosimo, S. Salinari, F. Miwakeichi, Y. Yamaguchi, P. Martinez, A. Cichocki, A. Tocci, and F. Babiloni. Estimate of causality between independent cortical spatial patterns during movement volition in spinal cord injured patients. Brain Topogr. 19(3):107–123, 2007.

    PubMed  Google Scholar 

  4. Athanasiou, A., M. A. Klados, N. Pandria, N. Foroglou, K. R. Kavazidi, K. Polyzoidis, and P. D. Bamidis. A systematic review of investigations into functional brain connectivity following spinal cord injury. Front. Hum. Neurosci. 11:517, 2017.

    PubMed  PubMed Central  Google Scholar 

  5. Athanasiou, A., M. A. Klados, C. Styliadis, N. Foroglou, K. Polyzoidis, and P. D. Bamidis. Investigating the role of α and β rhythms in functional motor networks. Neuroscience 378:54–70, 2016.

    PubMed  Google Scholar 

  6. Awai, L., M. Bolliger, A. R. Ferguson, G. Courtine, and A. Curt. Influence of spinal cord integrity on gait control in human spinal cord injury. Neurorehabil. Neural Repair 30(6):562–572, 2016.

    PubMed  Google Scholar 

  7. Barrière, G., H. Leblond, J. Provencher, and S. Rossignol. Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J. Neurosci. 28(15):3976–3987, 2008.

    PubMed  PubMed Central  Google Scholar 

  8. Benito-Penalva, J., D. J. Edwards, E. Opisso, M. Cortes, R. Lopez-Blazquez, N. Murillo, U. Costa, J. M. Tormos, J. Vidal-Samsó, J. Valls-Solé, European Multicenter Study about Human Spinal Cord Injury Study Group, and J. Medina. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch. Phys. Med. Rehabil. 93(3):404–412, 2012.

    PubMed  Google Scholar 

  9. Blanc, Y., and U. Dimanico. Electrode placement in surface electromyography (sEMG) “minimal crosstalk area” (MCA). Open Rehabil. J. 3:110–126, 2010.

    Google Scholar 

  10. Bönstrup, M., L. Krawinkel, R. Schulz, B. Cheng, J. Feldheim, G. Thomalla, L. G. Cohen, and C. Gerloff. Low-frequency brain oscillations track motor recovery in human stroke. Ann. Neurol. 86(6):853–865, 2019.

    PubMed  Google Scholar 

  11. Burns, A. S., R. J. Marino, S. Kalsi-Ryan, J. W. Middleton, L. A. Tetreault, J. R. Dettori, K. E. Mihalovich, and M. G. Fehlings. Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J. 7(3 Suppl):175S–194S, 2017.

    PubMed  PubMed Central  Google Scholar 

  12. Calabrò, R. S., A. Cacciola, F. Bertè, A. Manuli, A. Leo, A. Bramanti, A. Naro, D. Milardi, and P. Bramanti. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol. Sci. 37(4):503–514, 2016.

    PubMed  Google Scholar 

  13. Calabrò, R. S., A. Naro, M. Russo, P. Bramanti, L. Carioti, T. Balletta, A. Buda, A. Manuli, S. Filoni, and A. Bramanti. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J. Neuroeng. Rehabil. 15(1):35, 2018.

    PubMed  PubMed Central  Google Scholar 

  14. Cardoso, J. Source separation using higher order moments.International Conference on Acoustics, Speech, and Signal Processing (Glasgow, UK), vol. 4, pp. 2109–2112, 1989.

  15. Chen, I. H., Y. R. Yang, C. F. Lu, and R. Y. Wang. Novel gait training alters functional brain connectivity during walking in chronic stroke patients: a randomized controlled pilot trial. J. Neuroeng. Rehabil. 16(1):33, 2019.

    PubMed  PubMed Central  Google Scholar 

  16. Cheng, P. Y., and P. Y. Lai. Comparison of exoskeleton robots and end-effector robots on training methods and gait biomechanics. In: Intelligent Robotics and Applications: ICIRA 2013: Lecture Notes in Computer Science, Vol. 8102, edited by J. Lee, M. C. Lee, H. Liu, and J. H. Ryu. Berlin, Heidelberg: Springer, 2013.

    Google Scholar 

  17. Cichocki, A., and S. Amari. Adaptive Blind Signal and Image Processing. Learning Algorithms and Applications. NewYork, NY: Wiley, 2002.

    Google Scholar 

  18. De Vico Fallani, F., L. Astolfi, F. Cincotti, D. Mattia, M. G. Marciani, S. Salinari, J. Kurths, S. Gao, A. Cichocki, A. Colosimo, and F. Babiloni. Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum. Brain Mapp. 28(12):1334–1346, 2007.

    PubMed  Google Scholar 

  19. De Vico Fallani, F., L. Astolfi, F. Cincotti, D. Mattia, A. Tocci, M. G. Marciani, A. Colosimo, S. Salinari, S. Gao, A. Cichocki, and F. Babiloni. Extracting information from cortical connectivity patterns estimated from high resolution EEG recordings: a theoretical graph approach. Brain Topogr. 19(3):125–136, 2007.

    PubMed  Google Scholar 

  20. De Vico Fallani, F., F. A. Rodrigues, L. da Fontoura Costa, L. Astolfi, F. Cincotti, D. Mattia, S. Salinari, and F. Babiloni. Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topogr. 23(4):344–354, 2011.

    PubMed  Google Scholar 

  21. Dietz, V., R. Müller, and G. Colombo. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(Pt 12):2626–2634, 2002.

    PubMed  Google Scholar 

  22. Espenhahn, S., B. van Wijk, H. E. Rossiter, A. O. de Berker, N. D. Redman, J. Rondina, J. Diedrichsen, and N. S. Ward. Cortical beta oscillations are associated with motor performance following visuomotor learning. NeuroImage 195:340–353, 2019.

    PubMed  PubMed Central  Google Scholar 

  23. Fang, C. Y., J. L. Tsai, G. S. Li, A. S. Lien, and Y. J. Chang. Effects of robot-assisted gait training in individuals with spinal cord injury: a meta-analysis. Biomed. Res. Int. 2020:2102785, 2020.

    PubMed  PubMed Central  Google Scholar 

  24. Fuchs, M., J. Kastner, M. Wagner, S. Hawes, and J. S. Ebersole. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113(5):702–712, 2002.

    PubMed  Google Scholar 

  25. Gassert, R., and V. Dietz. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J. Neuroeng. Rehabil. 15:46, 2018.

    PubMed  PubMed Central  Google Scholar 

  26. Ghapanchizadeh, H., A. Siti Aqlima, I. Asnor Juraiza, and A. Maged Saleh Saeed. Review of surface electrode placement for recording electromyography signals. Biomed. Res. 2017:S1–S7, 2016.

    Google Scholar 

  27. Goffredo, M., C. Iacovelli, E. Russo, S. Pournajaf, C. Blasi, D. Galafate, L. Pellicciari, M. Agosti, S. Filoni, I. Aprile, and M. Franceschini. Stroke gait rehabilitation: a comparison of end-effector, overground exoskeleton, and conventional gait training. Appl. Sci. 9:2627, 2019.

    Google Scholar 

  28. Goñi, J., M. P. van den Heuvel, A. Avena-Koenigsberger, N. Velez de Mendizabal, R. F. Betzel, A. Griffa, P. Hagmann, B. Corominas-Murtra, J. P. Thiran, and O. Sporns. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl. Acad. Sci. U.S.A. 111(2):833–838, 2014.

    PubMed  Google Scholar 

  29. Grillner, S., and A. El Manira. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev. 100(1):271–320, 2020.

    PubMed  Google Scholar 

  30. Harnie, J., A. Doelman, E. de Vette, J. Audet, E. Desrochers, N. Gaudreault, and A. Frigon. The recovery of standing and locomotion after spinal cord injury does not require task-specific training. Life 8:e50134, 2019.

    Google Scholar 

  31. Hesse, S., N. Schattat, J. Mehrholz, and C. Werner. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion. NeuroRehabilitation 33(1):77–84, 2013.

    CAS  PubMed  Google Scholar 

  32. Hou, J. M., T. S. Sun, Z. M. Xiang, J. Z. Zhang, Z. C. Zhang, M. Zhao, J. F. Zhong, J. Liu, H. Zhang, H. L. Liu, R. B. Yan, and H. T. Li. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 277:446–454, 2014.

    CAS  PubMed  Google Scholar 

  33. Ilvesmäki, T., E. Koskinen, A. Brander, T. Luoto, J. Öhman, and H. Eskola. Spinal cord injury induces widespread chronic changes in cerebral white matter. Hum. Brain Mapp. 38(7):3637–3647, 2017.

    PubMed  PubMed Central  Google Scholar 

  34. Jonmohamadi, Y., G. Poudel, C. Innes, and R. Jones. Source-space ICA for EEG source separation, localization, and time-course reconstruction. NeuroImage 101:720–737, 2014.

    PubMed  Google Scholar 

  35. Kaushal, M., A. Oni-Orisan, G. Chen, W. Li, J. Leschke, B. D. Ward, B. Kalinosky, M. D. Budde, B. D. Schmit, S. J. Li, V. Muqeet, and S. N. Kurpad. Evaluation of whole-brain resting-state functional connectivity in spinal cord injury: a large-scale network analysis using network-based statistic. J. Neurotrauma 34(6):1278–1282, 2017.

    PubMed  Google Scholar 

  36. Khorasanizadeh, M., M. Yousefifard, M. Eskian, Y. Lu, M. Chalangari, J. S. Harrop, S. B. Jazayeri, S. Seyedpour, B. Khodaei, M. Hosseini, and V. Rahimi-Movaghar. Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J. Neurosurg. Spine 15:1–17, 2019.

    Google Scholar 

  37. Klarner, T., and E. P. Zehr. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J. Neurophysiol. 120(1):53–77, 2018.

    PubMed  PubMed Central  Google Scholar 

  38. Lam, T., K. Pauhl, A. Krassioukov, and J. J. Eng. Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury. Phys. Ther. 91(1):143–151, 2011.

    PubMed  Google Scholar 

  39. Lamont, E. V., and E. P. Zehr. Task-specific modulation of cutaneous reflexes expressed at functionally relevant gait cycle phases during level and incline walking and stair climbing. Exp. Brain Res. 173:185–192, 2006.

    PubMed  Google Scholar 

  40. Lee, S. H., G. Park, D. Y. Cho, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci. Rep. 10:1806, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lencioni, T., I. Carpinella, M. Rabuffetti, et al. Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks. Sci. Data 6:309, 2019.

    PubMed  PubMed Central  Google Scholar 

  42. Lu, T. W., and C. F. Chang. Biomechanics of human movement and its clinical applications. Kaohsiung J. Med. Sci. 28:S13–S25, 2012.

    PubMed  Google Scholar 

  43. Mattia, D., F. Cincotti, L. Astolfi, F. de Vico Fallani, G. Scivoletto, M. G. Marciani, and F. Babiloni. Motor cortical responsiveness to attempted movements in tetraplegia: evidence from neuroelectrical imaging. Clin. Neurophysiol. 120(1):181–189, 2009.

    PubMed  Google Scholar 

  44. Mazziotta, J., A. Toga, A. Evans, P. Fox, J. Lancaster, K. Zilles, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356(1412):1293–1322, 2001.

    CAS  Google Scholar 

  45. Mehrholz, J., L. A. Harvey, S. Thomas, and B. Elsner. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 55(8):722–729, 2017.

    CAS  PubMed  Google Scholar 

  46. Mehrholz, J., C. Werner, S. Hesse, and M. Pohl. Immediate and long-term functional impact of repetitive locomotor training as an adjunct to conventional physiotherapy for non-ambulatory patients after stroke. Disabil. Rehabil. 30(11):830–836, 2008.

    PubMed  Google Scholar 

  47. Mekki, M., A. D. Delgado, A. Fry, D. Putrino, and V. Huang. Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics 15(3):604–617, 2018.

    PubMed  PubMed Central  Google Scholar 

  48. Mıdık, M., N. Paker, D. Buğdaycı, and A. C. Mıdık. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk. J. Phys. Med. Rehabil. 66(1):54–59, 2020.

    PubMed  PubMed Central  Google Scholar 

  49. Min, Y. S., Y. Chang, J. W. Park, J. M. Lee, J. Cha, J. J. Yang, C. H. Kim, J. M. Hwang, J. N. Yoo, and T. D. Jung. Change of brain functional connectivity in patients with spinal cord injury: graph theory based approach. Ann. Rehabil. Med. 39(3):374–383, 2015.

    PubMed  PubMed Central  Google Scholar 

  50. Min, Y. S., J. W. Park, S. U. Jin, K. E. Jang, H. U. Nam, Y. S. Lee, T. D. Jung, and Y. Chang. Alteration of resting-state brain sensorimotor connectivity following spinal cord injury: a resting-state functional magnetic resonance imaging study. J. Neurotrauma 32(18):1422–1427, 2015.

    PubMed  Google Scholar 

  51. Mirbagheri, M. M., M. Kindig, X. Niu, D. Varoqui, and P. Conaway. Robotic-locomotor training as a tool to reduce neuromuscular abnormality in spinal cord injury: the application of system identification and advanced longitudinal modeling. IEEE International Conference on Rehabilitation Robotics: [Proceedings], 6650497, 2013.

  52. Molteni, F., G. Gasperini, G. Cannaviello, and E. Guanziroli. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM & R 10(9 Suppl 2):S174–S188, 2018.

    Google Scholar 

  53. Nardone, R., Y. Höller, F. Brigo, M. Seidl, M. Christova, J. Bergmann, et al. Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res. 1504:58–73, 2013.

    CAS  PubMed  Google Scholar 

  54. Oni-Orisan, A., M. Kaushal, W. Li, J. Leschke, B. D. Ward, A. Vedantam, B. Kalinosky, M. D. Budde, B. D. Schmit, S. J. Li, V. Muqeet, and S. N. Kurpad. Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: a prospective resting-state fMRI study. PLoS ONE 11(3):e0150351, 2016.

    PubMed  PubMed Central  Google Scholar 

  55. Pan, Y., W. B. Dou, Y. H. Wang, H. W. Luo, Y. X. Ge, S. Y. Yan, Q. Xu, Y. Y. Tu, Y. Q. Xiao, Q. Wu, Z. Z. Zheng, and H. L. Zhao. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury. Neural Regen. Res. 12(12):2059–2066, 2017.

    PubMed  PubMed Central  Google Scholar 

  56. Paolucci, S., M. Bragoni, P. Coiro, D. De Angelis, F. R. Fusco, D. Morelli, V. Venturiero, and L. Pratesi. Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ischemic stroke patients: a multivariate study. Cerebrovasc. Dis. (Basel, Switzerland) 26(1):16–22, 2008.

    Google Scholar 

  57. Pascual-Marqui, R. D. iscrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341, 2007.

  58. Pascual-Marqui, R. D., and R. J. Biscay-Lirio. Interaction patterns of brain activity across space, time and frequency. Part I: methods. arXiv:1103.2852v2, 2011.

  59. Rossignol, S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos. Trans. R Soc. B 361:1647–1671, 2006.

    CAS  Google Scholar 

  60. Rossignol, S., R. Dubuc, and J. P. Gossard. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86:89–154, 2006.

    PubMed  Google Scholar 

  61. Sale, P., M. Franceschini, A. Waldner, and S. Hesse. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur. J. Phys. Rehabil. Med. 48(1):111–121, 2012.

    CAS  PubMed  Google Scholar 

  62. Samaha, J., O. Gosseries, and B. R. Postle. Distinct oscillatory frequencies underlie excitability of human occipital and parietal cortex. J. Neurosci. 37:2824–2833, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schmidt, H., C. Werner, R. Bernhardt, S. Hesse, and J. Krüger. Gait rehabilitation machines based on programmable footplates. J. Neuroeng. Rehabil. 4:2, 2007.

    PubMed  PubMed Central  Google Scholar 

  64. Sharififar, S., H. K. Vincent, J. Shuster, and M. Bishop. Quantifying poststroke gait deviations: a meta-analysis of observational and cross-sectional experimental trials. J. Stroke Med. 2(1):23–31, 2019.

    Google Scholar 

  65. Swinnen, E., S. Duerinck, J. P. Baeyens, and R. Meeusen. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J. Rehabil. Med. 42:520–526, 2010.

    PubMed  Google Scholar 

  66. Youssofzadeh, V., D. Zanotto, K. Wong-Lin, S. K. Agrawal, and G. Prasad. Directed functional connectivity in fronto-centroparietal circuit correlates with motor adaptation in gait training. IEEE Trans. Neural Syst Rehabil. Eng. 24(11):1265–1275, 2016.

    PubMed  Google Scholar 

  67. Zheng, W., Q. Chen, X. Chen, L. Wan, W. Qin, Z. Qi, N. Chen, and K. Li. Brain white matter impairment in patients with spinal cord injury. Neural Plast. 2017:4671607, 2017.

    PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4