A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02610-0 below:

Imaging of Stroke in Rodents Using a Clinical Scanner and Inductively Coupled Specially Designed Receiver Coils

Abstract

Imaging of small laboratory animals in clinical MRI scanners is feasible but challenging. Compared with dedicated preclinical systems, clinical scanners have relatively low B0 field (1.5–3.0 T) and gradient strength (40–60 mT/m). This work explored the use of wireless inductively coupled coils (ICCs) combined with appropriate pulse sequence parameters to overcome these two drawbacks, with a special emphasis on the optimization of the coil passive detuning circuit for this application. A Bengal rose photothrombotic stroke model was used to induce cortical infarction in rats and mice. Animals were imaged in a 3T scanner using T2 and T1-weighted sequences. In all animals, the ICCs allowed acquisition of high-quality images of the infarcted brain at acute and chronic stages. Images obtained with the ICCs showed a substantial increase in SNR compared to clinical coils (by factors of 6 in the rat brain and 16–17 in the mouse brain), and the absence of wires made the animal preparation workflow straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. Abbreviations
B 0 :

Main static magnetic field

B 1 :

Rotating radio-frequency magnetic field

BOLD:

Blood oxygen level dependent

EPI:

Echo planar imaging

FOV:

Field of view

GRE:

Gradient echo

ICC:

Inductively coupled coil

IP:

Intraperitoneally

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

PFA:

Paraformaldehyde

RARE:

Rapid acquisition with relaxation enhancement

RF:

Radio-frequency

ROI:

Region of interest

SNR:

Signal to noise ratio

TE:

Echo time

T1:

Longitudinal magnetization relaxation time

T2:

Transverse magnetization relaxation time

References
  1. Bilgen, M. Simple, low-cost multipurpose RF coil for MR microscopy at 9.4 T. Magn. Reson. Med. 52:937–940, 2004.

    Article  Google Scholar 

  2. Bilgen, M. Feasibility and merits of performing preclinical imaging on clinical radiology and nuclear medicine systems. Int. J. Mol. Imaging 1–8:2013, 2013.

    Google Scholar 

  3. Brockmann, M. A., A. Kemmling, and C. Groden. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 43:79–87, 2007.

    Article  CAS  Google Scholar 

  4. Burl, M. Transmit mode coil detuning for MRI systems. US patent 6,850,067 B1, 2005.

  5. Dietrich, O., T. Lanz, H. M. Reinl, F. Berger, M. Peller, M. F. Reiser, and S. O. Schoenberg. Parallel imaging of mice on a clinical 3-telsa MRI system with a dedicated 8-channel small-animal coil array. In: Proceedings of the 15th Annual Meeting of ISMRM, 2007.

  6. Doty, F. D., G. Entzminger, J. Kulkarni, K. Pamarthy, and J. P. Staab. Radio frequency coil technology for small-animal MRI. NMR Biomed. 20:304–325, 2007.

    Article  Google Scholar 

  7. Furie, B. B. C. Review series thrombus formation in vivo. J. Clin. Investig. 115:3355–3362, 2005.

    Article  CAS  Google Scholar 

  8. Graf, H., P. Martirosian, F. Schick, M. Grieser, and M. E. Bellemann. Inductively coupled RF coils for examinations of small animals and objects in standard whole-body MR scanners. Med. Phys. 30:1241–1245, 2003.

    Article  Google Scholar 

  9. Herrmann, K. H., S. Schmidt, A. Kretz, R. Haenold, I. Krumbein, M. Metzler, C. Gaser, O. W. Witte, and J. R. Reichenbach. Possibilities and limitations for high resolution small animal MRI on a clinical whole-body 3T scanner. Magn. Reson. Mater. Phys. Biol. Med. 25:233–244, 2012.

    Article  Google Scholar 

  10. Kaiser, D., G. Weise, K. Möller, J. Scheibe, C. Pösel, S. Baasch, M. Gawlitza, D. Lobsien, K. Diederich, J. Minnerup, A. Kranz, J. Boltze, and D. C. Wagner. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol. Commun. 2:1–15, 2014.

    Article  Google Scholar 

  11. Keil, B., G. C. Wiggins, C. Triantafyllou, L. L. Wald, F. M. Meise, L. M. Schreiber, K. J. Klose, and J. T. Heverhagen. A 20-channel receive-only mouse array coil for a 3 T clinical MRI system. Magn. Reson. Med. 66:584–595, 2011.

    PubMed  Google Scholar 

  12. Labat-gest, V., and S. Tomasi. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J. Vis. Exp. 2013. https://doi.org/10.3791/50370.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee, M.-C., C.-Y. Jin, H.-S. Kim, J.-H. Kim, M.-K. Kim, H.-I. Kim, Y.-J. Lee, Y.-J. Son, Y.-O. Kim, and Y.-J. Woo. Stem cell dynamics in an experimental model of stroke. Chonnam Med. J. 47:90, 2011.

    Article  Google Scholar 

  14. Nedergaard, M. Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res. 408:79–85, 1987.

    Article  CAS  Google Scholar 

  15. Portnoy, S., S. C. Kale, A. Feintuch, C. Tardif, G. B. Pike, and R. M. Henkelman. Information content of SNR/resolution trade-offs in three-dimensional magnetic resonance imaging. Med. Phys. 36:1442–1451, 2009.

    Article  CAS  Google Scholar 

  16. Sauer, M., E. Heijman, R. Lamerichs, M. F. Mueller, and T. Lanz. Dedicated rat volume array for 3 T clinical scanners. Magn. Reson. Mater. Phys. Biol. Med. 21:42, 2008.

    Google Scholar 

  17. Schnall, M. D., C. Barlow, V. H. Subramanian, and J. S. Leigh. Wireless implanted magnetic resonance probes for in vivo NMR. J. Magn. Reson. 68:161–167, 1986.

    CAS  Google Scholar 

  18. Silver, X., W. X. Ni, E. V. Mercer, B. L. Beck, E. L. Bossart, B. Inglis, and T. H. Mareci. In vivo 1H magnetic resonance imaging and spectroscopy of the rat spinal cord using an inductively-coupled chronically implanted RF coil. Magn. Reson. Med. 46:1216–1222, 2001.

    Article  CAS  Google Scholar 

  19. Tanttu, J. NMR coil arrangement. US patent 4,680,549, 1987.

  20. Twieg, M., M. A. De Rooij, and M. A. Griswold. Active detuning of MRI receive coils with GaN FETs. IEEE Trans. Microw. Theory Technol. 2015. https://doi.org/10.1109/TMTT.2015.2495366.

    Article  Google Scholar 

  21. Vartiovaara, V. P. Detuning circuit and detuning method for an MRI system. US patent 8,013,609 B2, 2011.

  22. Wirth, E. D., T. H. Mareci, B. L. Beck, J. R. Fitzsimmons, and P. J. Reier. A comparison of an inductively coupled implanted coil with optimized surface coils for in vivo NMR imaging of the spinal cord. Magn. Reson. Med. 1993. https://doi.org/10.1002/mrm.1910300514.

    Article  PubMed  Google Scholar 

  23. Zimmer, F., F. G. Zöllner, S. Hoeger, S. Klotz, C. Tsagogiorgas, B. K. Krämer, and L. R. Schad. Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS ONE 8:e53849, 2013.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Adriana Honrubia and CIMA Morphology Platform for assistance in histological processing. This research was supported by Government of Navarra Grant Ref. 0011-1365-2017-000114.

Conflict of interest

Javier Isturiz is a shareholder and employee of Neos Biotec. All other authors declare that no benefits in any form have been or will be received by them from a commercial party related directly or indirectly to the subject of this manuscript.

Author information Author notes
  1. Miguel Valencia and María A. Fernández-Seara coordinated equally this work.

Authors and Affiliations
  1. Neuroscience Program, CIMA, University of Navarra, Pamplona, Spain

    Ignacio Iñigo-Marco, Maria J. Nicolas & Miguel Valencia

  2. IdiSNA, Navarra Institute for Health Research, Pamplona, Spain

    Ignacio Iñigo-Marco, Maria J. Nicolas, Pablo Domínguez, Gorka Bastarrika, Miguel Valencia & María A. Fernández-Seara

  3. Neos Biotec, Pamplona, Spain

    Javier Istúriz

  4. Radiology Department, Clínica Universidad de Navarra, Pio XII, 36, 31008, Pamplona, Spain

    Miguel Fernández, Pablo Domínguez, Gorka Bastarrika & María A. Fernández-Seara

Authors
  1. Ignacio Iñigo-Marco
  2. Javier Istúriz
  3. Miguel Fernández
  4. Maria J. Nicolas
  5. Pablo Domínguez
  6. Gorka Bastarrika
  7. Miguel Valencia
  8. María A. Fernández-Seara
Corresponding author

Correspondence to María A. Fernández-Seara.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

About this article Cite this article

Iñigo-Marco, I., Istúriz, J., Fernández, M. et al. Imaging of Stroke in Rodents Using a Clinical Scanner and Inductively Coupled Specially Designed Receiver Coils. Ann Biomed Eng 49, 746–756 (2021). https://doi.org/10.1007/s10439-020-02610-0

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4