Alexopoulos, L. G., J. Saez-Rodriguez, and C. W. Espelin. Highthroughput protein-based technologies and computational models for drug development, efficacy, and toxicity. In: Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies and Tools, edited by S. Ekins, and J. J. Xu. Hoboken, NJ: Wiley, 2009, pp. 29–52.
Andridge, R. R., and R. J. A. Little. A review of hot deck imputation for survey non-response. Int. Stat. Rev. 78(1):40–64, 2010.
Ateshian, G. A., V. S. P. Rajan, N. O. Chahine, C. E. Canal, and C. T. Hung. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131(6):61003, 2009.
Chae, Y. K., K. Ranganath, P. S. Hammerman, C. Vaklavas, N. A. Mohindra, A. Kalyan, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 48:16052–16057, 2017.
Cope, P. J., K. Ourradi, Y. Li, and M. Sharif. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage 27(2):230–239, 2018.
Enobakhare, B. O., D. L. Bader, and D. A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1, 9-dimethylmethylene blue. Anal. Biochem. 243(1):189–191, 1996.
Goldring, M. B. Osteoarthritis and cartilage: the role of cytokines. Curr. Rheumatol. Rep. 2(6):459–465, 2000.
Gözel, N., M. Çakirer, A. Karatas, M. Tuzcu, F. A. Özdemir, A. F. Dağlı, et al. Sorafenib reveals anti-arthritic potentials in collagen induced experimental arthritis model. Arch. Rheumatol. 33(3):309–315, 2018.
Grenier, S., M. M. Bhargava, and P. A. Torzilli. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J. Biomech. 47(3):645–652, 2014.
Guilak, F., B. Fermor, F. J. Keefe, V. B. Kraus, S. A. Olson, D. S. Pisetsky, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin. Orthop. Relat. Res. 423:17–26, 2004.
Holmes, M. H., and V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23(11):1145–1156, 1990.
Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.-P. Pelletier, and H. Fahmi. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7(1):3, 2011.
Karsdal, M. A., M. Michaelis, C. Ladel, A. S. Siebuhr, A. R. Bihlet, J. R. Andersen, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthritis Cartilage 24(12):2013–2021, 2016.
Khansai, M., K. Boonmaleerat, P. Pothacharoen, T. Phitak, and P. Kongtawelert. Ex vivo model exhibits protective effects of sesamin against destruction of cartilage induced with a combination of tumor necrosis factor-alpha and oncostatin M. BMC Complement. Altern. Med. 16:205, 2016.
Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1):11005, 2012.
Manacu, C. A., J. Martel-Pelletier, M. Roy-Beaudry, J.-P. Pelletier, J. C. L. Fernandes, F. Shipkolye, et al. Endothelin-1 in osteoarthritic chondrocytes triggers nitric oxide production and upregulates collagenase production. Arthritis Res Ther. 7(2):R324–R327, 2005.
Mariani, E., L. Pulsatelli, and A. Facchini. Signaling pathways in cartilage repair. Int. J. Mol. Sci. 15(5):8667–8698, 2014.
Melas, I. N., A. D. Chairakaki, E. I. Chatzopoulou, D. E. Messinis, T. Katopodi, V. Pliaka, et al. Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release data. Osteoarthritis Cartilage 22(3):509–518, 2014.
Merz, D., R. Liu, K. Johnson, and R. Terkeltaub. IL-8/CXCL8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol. 171(8):4406–4415, 2003.
Neidlin, M., E. Chantzi, G. Macheras, M. Gustafsson, and L. Alexopoulos. An ex vivo tissue model of cartilage degradation suggests that cartilage state can be determined from secreted key protein patterns. PLoS ONE 14(10):e0224231, 2019.
Neidlin, M., A. Korcari, G. Macheras, and L. G. Alexopoulos. Cue-signal-response analysis in 3D chondrocyte scaffolds with anabolic stimuli. Ann. Biomed. Eng. 46(2):345–353, 2018.
Ouyang, J., H. Jiang, H. Fang, W. Cui, and D. Cai. Isoimperatorin ameliorates osteoarthritis by downregulating the mammalian target of rapamycin C1 signaling pathway. Mol. Med. Rep. 16(6):9636–9644, 2017.
Pal, B., H. Endisha, Y. Zhang, and M. Kapoor. mTOR: a potential therapeutic target in osteoarthritis? Drugs R D. 15(1):27–36, 2015.
Peck, Y., L. Y. Ng, J. Y. L. Goh, C. Gao, and D.-A. Wang. A three-dimensionally engineered biomimetic cartilaginous tissue model for osteoarthritic drug evaluation. Mol. Pharm. 11(7):1997–2008, 2014.
R Core Team. A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/; 2018.
Román-Blas, J. A., S. R. Castañeda, R. Largo, and G. Herrero-Beaumont. Osteoarthritis associated with estrogen deficiency. Arthritis Res. Ther. 11:241, 2009.
Sherman, S. L., R. S. Khazai, C. H. James, A. M. Stoker, D. L. Flood, and J. L. Cook. In vitro toxicity of local anesthetics and corticosteroids on chondrocyte and synoviocyte viability and metabolism. Cartilage 6(2):106–112, 2015.
Tsuchida, A. I., M. Beekhuizen, M. Ct Hart, T. R. D. J. Radstake, W. J. A. Dhert, D. B. F. Saris, et al. Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthritis Res Ther. 16(5):441, 2014.
Wang, Z., J. Huang, S. Zhou, F. Luo, W. Xu, Q. Wang, et al. Anemonin attenuates osteoarthritis progression through inhibiting the activation of IL-1β/NF-κB pathway. J. Cell Mol. Med. 21(12):3231–3243, 2017.
Willard, V. P., B. O. Diekman, J. Sanchez-Adams, N. Christoforou, K. W. Leong, and F. Guilak. Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol. 66(11):3062–3072, 2014.
Xue, J., J. Wang, Q. Liu, and A. Luo. Tumor necrosis factor-α induces ADAMTS-4 expression in human osteoarthritis chondrocytes. Mol Med Rep. 8(6):1755–1760, 2013.
Zhang, Q., Z.-S. Yin, F.-W. Zhang, K. Cao, and H.-Y. Sun. CTHRC1 mediates IL-1$β$-induced apoptosis in chondrocytes via JNK1/2 signaling. Int. J. Mol. Med. 41(4):2270–2278, 2018.
Žigon-Branc, S., M. Jeras, A. Blejec, and A. Barlič. Applicability of human osteoarthritic chondrocytes for in vitro efficacy testing of anti-TNFα drugs. Biologicals 45:96–101, 2017.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4