Alonzo, M., A. Bos, S. Bennett, and H. Ferral. The Emprint™ ablation system with Thermosphere™ technology: one of the newer next-generation microwave ablation technologies. Semin. Interv. Radiol. 32:335–338, 2015.
Arena, C. B., R. L. Mahajan, M. N. Rylander, and R. V. Davalos. Towards the development of latent heat storage electrodes for electroporation-based therapies. Appl. Phys. Lett. 101:083902, 2012.
Bhonsle, S., M. Bonakdar, R. E. Neal, 2nd, C. Aardema, J. L. Robertson, J. Howarth, H. Kavnoudias, K. R. Thomson, S. N. Goldberg, and R. V. Davalos. Characterization of irreversible electroporation ablation with a validated perfused organ model. J. Vasc. Interv. Radiol. 27:1913–1922, 2016.
Chen, S., G. Yin, W. Xu, W. Xi, and M. Zhang. Clinical research on advanced liver cancer treated with percutaneous RFA cool-tip electrode under ultrasound guidance. J. Interv. Radiol. 17:37–40, 2008.
Diederich, C. J. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int. J. Hyperthermia 21:745–753, 2005.
Edelblute, C. M., J. Hornef, N. I. Burcus, T. Norman, S. J. Beebe, K. Schoenbach, R. Heller, C. Jiang, and S. Guo. Controllable moderate heating enhances the therapeutic efficacy of irreversible electroporation for pancreatic cancer. Sci. Rep. 7:11767, 2017.
Faroja, M., M. Ahmed, L. Appelbaum, E. Ben-David, M. Moussa, J. Sosna, I. Nissenbaum, and S. N. Goldberg. Irreversible electroporation ablation: is all the damage nonthermal? Radiology 266:462–470, 2013.
Feng, Y., J. TinsleyOden, and M. N. Rylander. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. J. Biomech. Eng. 2008. https://doi.org/10.1115/1.2947320.
Fesmire, C. C., R. A. Petrella, C. A. Fogle, D. Gerber, L. Xing, and M. B. Sano. Temperature dependence of high frequency irreversible electroporation evaluated in a 3d tumor model. Ann. Biomed. Eng. 2020. https://doi.org/10.1016/j.jvir.2019.05.009.
Gabriel, C. Compilation of the dielectric properties of body tissues at rf and microwave frequencies. (DTIC Document, 1996).
Garcia, P. A., J. H. Rossmeisl, Jr, T. L. Ellis, and R. V. Davalos. Nonthermal irreversible electroporation as a focal ablation treatment for brain cancer. Tumors Central Nerv. Syst. 12:171–182, 2014.
Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, and R. V. Davalos. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed. Eng. Online 10:34, 2011.
Golberg, A., and M. L. Yarmush. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans. Biomed. Eng. 60:707–714, 2013.
Haemmerich, D., L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee, and J. G. Webster. Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Trans. Biomed. Eng. 50:493–500, 2003.
Hoffmann, R., H. Rempp, L. Erhard, G. Blumenstock, P. L. Pereira, C. D. Claussen, and S. Clasen. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology 268:89–97, 2013.
Ierardi, A. M., A. Mangano, C. Floridi, G. Dionigi, A. Biondi, E. Duka, N. Lucchina, G. D. Lianos, and G. Carrafiello. a new system of microwave ablation at 2450 MHz: preliminary experience. Upd. Surg. 67:39–45, 2015.
Kaufman, J. D., C. C. Fesmire, R. A. Petrella, C. A. Fogle, L. Xing, D. Gerber, and M. B. Sano. High-frequency irreversible electroporation using 5,000-V waveforms to create reproducible 2- and 4-cm ablation zones - a laboratory investigation using mechanically perfused liver. J. Vasc. Interv. Radiol. 2019. https://doi.org/10.1016/j.jvir.2019.05.009.
Kourounis, G., P. PaulTabet, and D. Moris. Irreversible electroporation (Nanoknife® treatment) in the field of hepatobiliary surgery: current status and future perspectives. J. BUON 22:141–149, 2017.
Kuang, M., M. D. Lu, X. Y. Xie, H. X. Xu, L. Q. Mo, G. J. Liu, Z. F. Xu, Y. L. Zheng, and J. Y. Liang. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna—experimental and clinical studies. Radiology 242:914–924, 2007.
Liang, P., J. Yu, X.-L. Yu, X.-H. Wang, Q. Wei, S.-Y. Yu, H.-X. Li, H.-T. Sun, Z.-X. Zhang, and H.-C. Liu. Percutaneous cooled-tip microwave ablation under ultrasound guidance for primary liver cancer: a multicentre analysis of 1363 treatment-naive lesions in 1007 patients in China. Gut 61:1100–1101, 2012.
Lundy, M., M. Garland-Kledzik, and P. Shen. Arterio-enteric fistula after irreversible electroporation. Am. Surg. 85:e55–e57, 2019.
Martin, 2nd, R. C., D. Kwon, S. Chalikonda, M. Sellers, E. Kotz, C. Scoggins, K. M. McMasters, and K. Watkins. Treatment of 200 locally advanced (stage iii) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann. Surg. 262:486–494, 2015.
Martin, R. C., K. McFarland, S. Ellis, and V. Velanovich. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann. Surg. Oncol. 20:443–449, 2013; discussion 492-484.
Martin, R. C., E. Schwartz, J. Adams, I. Farah, and B. M. Derhake. Intra-operative anesthesia management in patients undergoing surgical irreversible electroporation of the pancreas, liver, kidney, and retroperitoneal tumors. Anesthesiol. Pain Med. 5:e22786, 2015.
Miao, Y., Y. Ni, H. Bosmans, J. Yu, J. Vaninbroukx, S. Dymarkowski, H. Zhang, and G. Marchal. Radiofrequency ablation for eradication of renal tumor in a rabbit model by using a cooled-tip electrode technique. Ann. Surg. Oncol. 8:651–657, 2001.
Moritz, A. R., and F. Henriques, Jr. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol. 23:695, 1947.
Narayanan, G., S. Bhatia, A. Echenique, R. Suthar, K. Barbery, and J. Yrizarry. Vessel patency post irreversible electroporation. Cardiovasc. Intervent. Radiol. 37:1523–1529, 2014.
Ng, K., K. Chok, A. Chan, T. Cheung, T. Wong, J. Fung, J. Yuen, R. Poon, S. Fan, and C. Lo. Randomized Clinical Trial of Hepatic Resection Versus Radiofrequency Ablation for Early-Stage Hepatocellular Carcinoma. Br. J. Surg. 104:1775–1784, 2017.
Ni, Y., Y. Miao, S. Mulier, J. Yu, A. Baert, and G. Marchal. A novel, “cooled-wet” electrode for radiofrequency ablation. Eur. Radiol. 10:852–854, 2000.
Niessen, C., S. Thumann, L. Beyer, B. Pregler, J. Kramer, S. Lang, A. Teufel, E. Jung, C. Stroszczynski, and P. Wiggermann. Percutaneous irreversible electroporation: long-term survival analysis of 71 patients with inoperable malignant hepatic tumors. Sci. Rep. 7:43687, 2017.
O’Brien, T. J., M. Bonakdar, S. Bhonsle, R. E. Neal, 2nd, C. H. Aardema, Jr, J. L. Robertson, S. N. Goldberg, and R. V. Davalos. Effects of internal electrode cooling on irreversible electroporation using a perfused organ model. Int. J. Hyperther. 35:44–55, 2018.
Petrella, R. A., C. C. Fesmire, J. A. Kaufman, N. Topasna, and M. B. Sano. Algorithmically controlled electroporation: a technique for closed loop temperature regulated pulsed electric field cancer ablation. IEEE Trans. Biomed. Eng., 2020 (in press).
Philips, P., D. Hays, and R. C. Martin. Irreversible electroporation ablation (ire) of unresectable soft tissue tumors: learning curve evaluation in the first 150 patients treated. PLoS ONE 8:e76260, 2013.
Sano, M. B., M. R. DeWitt, S. D. Teeter, and L. Xing. Optimization of a single insertion electrode array for the creation of clinically relevant ablations using high-frequency irreversible electroporation. Comput. Biol. Med. 95:107–117, 2018.
Sano, M. B., R. E. Fan, G. L. Hwang, G. A. Sonn, and L. Xing. Production of spherical ablations using nonthermal irreversible electroporation: a laboratory investigation using a single electrode and grounding pad. J. Vasc. Interv. Radiol. 27:1432–1440, 2016.
Sano, M. B., C. C. Fesmire, M. R. DeWitt, and L. Xing. Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3d tumor model. Phys. Med. Biol. 63:135022, 2018.
Shafiee, H., P. A. Garcia, and R. V. Davalos. A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation. J. Biomech. Eng. 131:074509, 2009.
Wandel, A., E. Ben-David, B. S. Ulusoy, R. Neal, M. Faruja, I. Nissenbaum, S. Gourovich, and S. N. Goldberg. Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode. J. Vasc. Interv. Radiol. 27:1441–1450, 2016.
Wang, Y., Y. Sun, L. Feng, Y. Gao, X. Ni, and P. Liang. Internally cooled antenna for microwave ablation: results in ex vivo and in vivo porcine livers. Eur. J. Radiol. 67:357–361, 2008.
Weaver, J. C., K. C. Smith, A. T. Esser, R. S. Son, and T. R. Gowrishankar. A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243, 2012.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4