A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02513-0 below:

Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue

References
  1. Agarwal, A., J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab. Chip 13:3599–3608, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahola, A., A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen. Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation. Biomed. Eng. Online 13:39, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahola, A., R. P. Pölönen, K. Aalto-Setälä, and J. Hyttinen. Simultaneous measurement of contraction and calcium transients in stem cell derived cardiomyocytes. Ann. Biomed. Eng. 46:148–158, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. Alford, P. W., A. W. Feinberg, S. P. Sheehy, and K. K. Parker. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31:3613–3621, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benam, K. H., S. Dauth, B. Hassell, A. Herland, A. Jain, K.-J. Jang, K. Karalis, H. J. Kim, L. MacQueen, R. Mahmoodian, S. Musah, Y. S. Torisawa, A. D. van der Meer, R. Villenave, M. Yadid, K. K. Parker, and D. E. Ingber. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 10:195–262, 2015.

    Article  CAS  Google Scholar 

  6. Bingen, B. O., M. C. Engels, M. J. Schalij, W. Jangsangthong, Z. Neshati, I. Feola, D. L. Ypey, S. F. Askar, A. V. Panfilov, D. A. Pijnappels, and A. A. de Vries. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc. Res. 104:194–205, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Boudreau-Beland, J., J. E. Duverger, E. Petitjean, A. Maguy, J. Ledoux, and P. Comtois. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate. PLoS ONE 10(6):e0127977, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Braunwald, E. Heart Disease, a Textbook of Cardiovascular Medicine. Philadelphia, PA: WB Saunders Company, 2001.

    Google Scholar 

  9. Burton, R. A. B., A. Klimas, C. M. Ambrosi, J. Tomek, A. Corbett, E. Entcheva, and G. Bub. Optical control of excitation waves in cardiac tissue. Nat. Photonics 9:813–816, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capulli, A. K., K. Tian, N. Mehandru, A. Bukhta, S. F. Choudhury, M. Suchyta, and K. K. Parker. Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14:3181–3186, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chae, S. K., J. H. Ryoo, and S. H. Lee. Thin and large free-standing PDMS membrane by using polystyrene Petri dish. Biochip J. 6:184–190, 2012.

    Article  CAS  Google Scholar 

  12. Cherry, E. M., and F. H. Fenton. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10:125016, 2008.

    Article  CAS  Google Scholar 

  13. Christoph, J., and S. Luther. Marker-free tracking for motion artifact compensation and deformation measurements in optical mapping videos of contracting hearts. Front. Physiol. 9:1483, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Christoph, J., J. Schröder-Schetelig, and S. Luther. Electromechanical optical mapping. Prog. Biophys. Mol. Biol. 130:150–169, 2017.

    Article  CAS  PubMed  Google Scholar 

  15. Davidenko, J. M., A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351, 1992.

    Article  CAS  PubMed  Google Scholar 

  16. del Álamo, J. C., D. Lemons, R. Serrano, A. Savchenko, F. Cerignoli, R. Bodmer, and M. Mercola. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochem. Biophys. Acta 1717–1727:2016, 1863.

    Google Scholar 

  17. Denning, C., V. Borgdorff, J. Crutchley, K. S. A. Firth, V. George, S. Kalra, A. Kondrashov, M. D. Hoang, D. Mosqueira, A. Patel, and L. Prodanov. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochim. Biophys. Acta 1728–1748:2016, 1863.

    Google Scholar 

  18. Dimitriadis, E. K., F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(5):2798–2810, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Goßmann, M., R. Frotscher, P. Linder, S. Neumann, R. Bayer, M. Epple, M. Staat, A. Artmann, and G. M. Artmann. Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells. Cell. Physiol. Biochem. 38:1182–1198, 2016.

    Article  PubMed  CAS  Google Scholar 

  21. Grosberg, A., P. W. Alford, M. L. McCain, and K. K. Parker. Ensembles of engineered cardiac tissues for physiological and pharmacological study. Heart on a chip. Lab. Chip. 11:4165–4173, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardy, M. E. L., C. L. Lawrence, N. B. Standen, and G. C. Rodrigo. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes? J. Pharmacol. Toxicol. Methods 54:173–182, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Hayakawa, T., T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano. Noninvasive evaluation of contractile behavior of cardiomyocyte nonolayers based on motion vector analysis. Tissue Eng. Part C 18:21–32, 2012.

    Article  CAS  Google Scholar 

  24. Hecht, E. Optics. Harlow: Pearson Education, p. 109, 2015.

    Google Scholar 

  25. Herron, T. J., P. Lee, and J. Jalife. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ. Res. 110:609–623, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herron, T. J., A. M. D. Rocha, K. F. Campbell, D. Ponce-Balbuena, B. C. Willis, G. Guerrero-Serna, Q. Liu, M. Klos, H. Musa, M. Zarzoso, and A. Bizy. Extracellular matrix–mediated maturation of human pluripotent stem cell–derived cardiac monolayer structure and electrophysiological function. Circulation 9(4):e003638, 2016.

    CAS  PubMed  Google Scholar 

  27. Hirt, M. N., A. Hansen, and T. Eschenhagen. Cardiac tissue engineering: state of the art. Circ. Res. 114:354–367, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Hossain, M. M., E. Shimizu, M. Saito, S. Ramachandra Rao, Y. Yamaguchi, and E. Tamiya. Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video. Analyst 135:1624–1630, 2010.

    Article  CAS  PubMed  Google Scholar 

  29. Huebsch, N., P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, and C. I. Spencer. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C 21:467–479, 2015.

    Article  CAS  Google Scholar 

  30. Hwang, S.-M., K.-H. Yea, and K. J. Lee. Regular & alternant. Spiral waves of contractile motion on rat ventricle cell cultures. Phys. Rev. Lett. 92:1–4, 2004.

    Article  CAS  Google Scholar 

  31. Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95(7):3479–3487, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jalife, J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62:25–50, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Kadota, S., I. Minami, N. Morone, J. E. Heuser, K. Agladze, and N. Nakatsuji. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur. Heart J. 34:1147–1156, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Kamgoué, A., J. Ohayon, Y. Usson, L. Riou, and P. Tracqui. Quantification of cardiomyocyte contraction based on image correlation analysis. Cytom. Part A 75:298–308, 2009.

    Article  Google Scholar 

  35. Kijlstra, J. D., D. Hu, N. Mittal, E. Kausel, P. Van Der Meer, A. Garakani, and I. J. Domian. Integrated analysis of contractile kinetics, force generation, and electrical activity in single human stem cell-derived cardiomyocytes. Stem Cell Rep. 5:1226–1238, 2015.

    Article  Google Scholar 

  36. Kim, S. B., H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab. Chip. 11:1801–1807, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kléber, A. G., and Y. Rudy. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84:431–488, 2004.

    Article  PubMed  Google Scholar 

  38. Kudryashova, N. N., A. S. Teplenin, Y. V. Orlova, L. V. Selina, and K. Agladze. Arrhythmogenic role of the border between two areas of cardiac cell alignment. J. Mol. Cell. Cardiol. 76:227–234, 2014.

    Article  CAS  PubMed  Google Scholar 

  39. Laurila, E., A. Ahola, J. Hyttinen, and K. Aalto-Setälä. Methods for in vitro functional analysis of iPSC derived cardiomyocytes—special focus on analyzing the mechanical beating behavior. Biochem. Biophys. Acta 1864–1872:2016, 1863.

    Google Scholar 

  40. Linder, P., J. Trzewik, M. Rüffer, G. M. Artmann, I. Digel, R. Kurz, A. Rothermel, A. Robitzki, and A. Temiz Artmann. Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes. Med. Biol. Eng. Comput. 48:59–65, 2010.

    Article  CAS  PubMed  Google Scholar 

  41. McDonald, J. C., and G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–499, 2002.

    Article  CAS  PubMed  Google Scholar 

  42. Moon, I., E. Ahmadzadeh, K. Jaferzadeh, and N. Kim. Automated quantification study of human cardiomyocyte synchronization using holographic imaging. Biomed. Opt. Express 10:610–621, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nawroth, J. C., H. Lee, A. W. Feinberg, C. M. Ripplinger, M. L. McCain, A. Grosberg, J. O. Dabiri, and K. K. Parker. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30:792–797, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nyapshaev, I. A., A. V. Ankudinov, A. V. Stovpyaga, E. Y. Trofimova, and M. Y. Eropkin. Diagnostics of living cells under an atomic force microscope using a submicron spherical probe with a calibrated radius of curvature. Tech. Phys. 57(10):1430–1437, 2012.

    Article  CAS  Google Scholar 

  45. Orlova, Y., N. Magome, L. Liu, Y. Chen, and K. Agladze. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 32:5615–5624, 2011.

    Article  CAS  PubMed  Google Scholar 

  46. Park, S. J., M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, S. Dauth, A. K. Capulli, and F. S. Pasqualini. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:158–162, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pauwelyn, T., V. Reumers, G. Vanmeerbeeck, R. Stahl, S. Janssens, L. Lagae, D. Braeken, and A. Lambrechts. Label-free cardiac contractility monitoring for drug screening applications based on compact high-speed lens-free imaging. Proc. SPIE 9328:932818, 2015.

    Article  Google Scholar 

  48. Pauwelyn, T., R. Stahl, L. Mayo, X. Zheng, A. Lambrechts, S. Janssens, L. Lagae, V. Reumers, and D. Braeken. Reflective lens-free imaging on high-density silicon microelectrode arrays for monitoring and evaluation of in vitro cardiac contractility. Biomed. Opt. Express 9:1827–1841, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Podgurskaya, A. D., V. A. Tsvelaya, S. R. Frolova, I. Y. Kalita, N. N. Kudryashova, and K. I. Agladze. Effect of heptanol and ethanol on excitation wave propagation in a neonatal rat ventricular myocyte monolayer. Toxicol. Vitrol. 51:136–144, 2018.

    Article  CAS  Google Scholar 

  50. Podgurskaya, A. D., V. A. Tsvelaya, M. M. Slotvitsky, E. V. Dementyeva, K. R. Valetdinova, and K. I. Agladze. The Use of iPSC-derived cardiomyocytes and optical mapping for erythromycin arrhythmogenicity testing. Cardiovasc. Toxicol. 19:518–528, 2019.

    Article  CAS  PubMed  Google Scholar 

  51. Sackmann, E. K., A. L. Fulton, and D. J. Beebe. The present and future role of microfluidics in biomedical research. Nature 507:181–189, 2014.

    Article  CAS  PubMed  Google Scholar 

  52. Schaffer, P., H. Ahammer, W. Müller, B. Koidl, and H. Windisch. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Pflügers Arch. Eur. J. Physiol. 426:548–551, 1994.

    Article  CAS  Google Scholar 

  53. Shaked, N. T., L. L. Satterwhite, N. Bursac, and A. Wax. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomed. Opt. Express 1:1165–1167, 2010.

    Article  Google Scholar 

  54. Shutko, A. V., V. S. Gorbunov, K. G. Guria, and K. I. Agladze. Biocontractile microfluidic channels for peristaltic pumping. Biomed. Microdev. 19:72, 2017.

    Article  Google Scholar 

  55. Teplenin, A., A. Krasheninnikova, N. Agladze, K. Sidoruk, O. Agapova, I. Agapov, V. Bogush, and K. Agladze. Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes. PLoS ONE 10:e0121155, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang, Y., P. Kanjanaboos, S. P. McBride, E. Barry, X. M. Lin, and H. M. Jaeger. Mechanical properties of self-assembled nanoparticle membranes: stretching and bending. Faraday Discuss. 181:325–338, 2015.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, L., L. Liu, X. Li, N. Magome, K. Agladze, and Y. Chen. Multi-electrode monitoring of guided excitation in patterned cardiomyocytes. Microelectron. Eng. 111:267–271, 2013.

    Article  CAS  Google Scholar 

  58. Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.

    Article  CAS  PubMed  Google Scholar 

  59. Winfree, A. T. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. New Jersey: Princeton University Press, 1987.

    Google Scholar 

  60. Wolfe, D. B., D. Qin, and G. M. Whitesides. Rapid prototyping of microstructures by soft lithography for biotechnology. Methods Mol. Biol. 583:81–107, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4