A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02494-0 below:

Fifty Years of Biomedical Engineering Undergraduate Education

References
  1. ABET. Accredited Bioengineering and Biomedical Engineering Programs. http://main.abet.org/aps/Accreditedprogramsearch.aspx.

  2. Abu-Faraj, Z. O. Project Alexander the Great: an analytical comprehensive study on the global spread of bioengineering/biomedical engineering education. In: Biomedical Engineering, Trends in Materials Science, edited by A. N. Laskovski. London: Intechopen.com, 2011, pp. 549–564.

    Google Scholar 

  3. Amos J. R. and G. R. Dupont. Work in progress: are we on track with tracks. In: American Society for Engineering Education Annual Conference and Exposition. Salt Lake City, UT, 2018. https://peer.asee.org/30001.

  4. Blosser, E. Gender segregation across engineering majors: how engineering professors understand women’s underrepresentation in undergraduate engineering. Eng. Stud. 9:24–44, 2017.

    Article  Google Scholar 

  5. Bowman, K. J. Potential impacts of creating biomedical engineering programs on gender distribution within leading engineering colleges. J. Divers. Higher Educ. 4:54–64, 2011.

    Google Scholar 

  6. Bransford, J. D., A. Brown, and R. Cocking. How People Learn: Brain, Mind, Experience and School. Washington, DC: National Academy Press, 1999.

    Google Scholar 

  7. Brophy, S. P. Constructing shareable learning materials in bioengineering education. IEEE Eng. Med. Biol. Mag. 22:39–46, 2003.

    Article  PubMed  Google Scholar 

  8. Chesler, N. C. A how-to guide for promoting diversity and inclusion in biomedical engineering. Ann. Biomed. Eng. 47:1167–1170, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chesler, N. C., G. Barabino, S. N. Bhatia, and R. Richards-Kortum. The pipeline still leaks and more than you think: a status report on gender diversity in biomedical engineering. Ann. Biomed. Eng. 38:1928–1935, 2010.

    Article  PubMed  Google Scholar 

  10. Clayton, M. Delphi: a technique to harness expert opinion for critical decision-making tasks in education. Educ. Psychol. 17:373–386, 1997.

    Article  Google Scholar 

  11. Cordray, D. S., T. R. Harris, and S. Klein. A research synthesis of the effectiveness, replicability, and generality of the VaNTH challenge-based instructional modules in bioengineering. J. Eng. Educ. 98:335–348, 2009.

    Article  Google Scholar 

  12. Council of Chairs of Bioengineering and Biomedical Engineering. Plenary Presentations from the 2019 BME Education Summit Meeting. 2019. https://www.bmes.org/biococ.

  13. Council of Chairs of Bioengineering and Biomedical Engineering. Survey Results and Documents, 2020. https://www.bmes.org/biococ.

  14. Davies, P. F., and M. Litt. Interdisciplinary BME education: a clinical preceptorship course for undergraduate bioengineering students. Ann. Biomed. Eng. 34:276–281, 2006.

    Article  PubMed  Google Scholar 

  15. Engineering World Health. Annual Report, 2018. https://ewh.org/media/1141/2018-annual-report-final.pdf.

  16. Freeman, S., S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and M. P. Wenderoth. Active learning increases student performance in science, engineering, and mathematics. Proc. Natl. Acad. Sci. USA 111:8410–8415, 2014.

    Article  PubMed  CAS  Google Scholar 

  17. Gatchell D., R. Linsenmeier, and T. Harris. Biomedical engineering key content survey—the 1st step in a Delphi study to determine the core undergraduate BME curriculum. In: American Society for Engineering Education Annual Conference and Exposition. Salt Lake City, UT, 2004. https://peer.asee.org/13365.

  18. Gatchell D. W. and R. A. Linsenmeier. The VaNTH biomedical engineering key content survey, part two. In: American Society for Engineering Education Annual Conference and Exposition. Honolulu, HI, 2007. https://peer.asee.org/2952.

  19. Gatchell D. W. and R. A. Linsenmeier. Similarities and differences in undergraduate biomedical engineering curricula in the United States. In: American Society for Engineering Education Annual Conference and Exposition. Indianapolis, IN, 2014. https://peer.asee.org/23015.

  20. Godfrey E. Cultures within cultures: welcoming or unwelcoming for women? In: American Society for Engineering Education Annual Conference and Exposition. Honolulu, Hawaii, 2007. https://peer.asee.org/2302.

  21. Griffith, L., M. Swartz, and R. Tranquillo. Education for careers in tissue engineering and regenerative medicine. Ann. Biomed. Eng. 34:265–269, 2006.

    Article  PubMed  Google Scholar 

  22. Guilbeau, E. J. Undergraduate bioengineering/biomedical engineering curricula: current status and issues for the 21st century. Abstract. Ann. Biomed. Eng. 19:547, 1991.

    Article  Google Scholar 

  23. Hammer, D. A., and R. E. Waugh. Teaching cellular engineering. Ann. Biomed. Eng. 34:253–256, 2006.

    Article  PubMed  Google Scholar 

  24. Hart, R. T. Biomedical engineering accredited undergraduate programs: 4 decades of growth. Ann. Biomed. Eng. 43:1713–1715, 2015.

    Article  PubMed  Google Scholar 

  25. Howard, L. Adaptive learning technologies for biomedical education. IEEE Eng. Med. Biol. Mag. 22:58–65, 2003.

    Article  PubMed  Google Scholar 

  26. Ideker, T., L. R. Winslow, and D. A. Lauffenburger. Bioengineering and systems biology. Ann. Biomed. Eng. 34:257–264, 2006.

    Article  PubMed  Google Scholar 

  27. Institute of International Education. Whitaker International Program, 2019. https://www.iie.org/programs/Whitaker-International-Fellows-and-Scholars-Program.

  28. Katona, P. G. Biomedical engineering and the Whitaker Foundation: a thirty-year partnership. Ann. Biomed. Eng. 34:904–916, 2006.

    Article  PubMed  Google Scholar 

  29. Knight, D. B., L. R. Lattuca, A. Yin, G. Kremer, T. York, and H. K. Ro. An exploration of gender diversity in engineering programs: a curriculum and instruction-based perspective. J Women Minor. Sci. Eng. 18:55–78, 2012.

    Article  Google Scholar 

  30. LaPlaca M. C., W. C. Newstetter, and A. P. Yoganathan. Problem-based learning in biomedical engineering curricula. In: 3lst ASEE/IEEE Frontiers in Education Conference. Reno, NV, 2001, pp. F3E-16–F13E-21.

  31. Lerner, A. L., B. H. Kenknight, A. Rosenthal, and P. G. Yock. Design in BME: challenges, issues, and opportunities. Ann. Biomed. Eng. 34:200–208, 2006.

    Article  PubMed  Google Scholar 

  32. Linsenmeier R. A. and D. W. Gatchell. Physiology problems and physiology concepts for biomedical engineering students. In: American Society for Engineering Education Annual Conference and Exposition, Pittsburgh, PA, 2008. https://peer.asee.org/3880.

  33. Lord S. M., R. A. Layton, and M. W. Ohland. A disciplinary comparison of trajectories of USA engineering students. 2014 IEEE Frontiers in Education Conference (FIE), 2014.

  34. Louie, A., J. Izatt, and K. Ferrara. Biomedical imaging graduate curricula and courses: report from the 2005 Whitaker Biomedical Engineering Educational Summit. Ann. Biomed. Eng. 34:239–247, 2006.

    Article  PubMed  Google Scholar 

  35. Lutchen, K. R., and E. J. Berbari. White paper: rationale, goals, and approach for education of biosystems and biosignals in undergraduate biomedical engineering degree programs. Ann. Biomed. Eng. 34:248–252, 2006.

    Article  PubMed  Google Scholar 

  36. Martin, T., A. J. Petrosino, S. Rivale, and K. Diller. The development of adaptive expertise in biotransport. New Dir. Teach. Learn. 108:35–47, 2007.

    Google Scholar 

  37. National Academy of Engineering. A study of engineering in medicine and health care: a final report to the National Institutes of Health. Washington, DC, 1974.

  38. National Academy of Engineering. The engineer of 2020. Visions of engineering in the new century. Washington, DC: National Academies Press, 2004.

    Google Scholar 

  39. National Academy of Engineering. Grand Challenges for Engineering, 2012. http://www.engineeringchallenges.org/.

  40. National Institute of Biomedical Imaging and Bioengineering. Design by Biomedical Undergraduate Teams (DEBUT) Challenge, 2019. https://www.nibib.nih.gov/training-careers/undergraduate-graduate/design-biomedical-undergraduate-teams-debut-challenge.

  41. National Science Foundation. REU Sites: Engineering, 2019. https://www.nsf.gov/crssprgm/reu/list_result.jsp?unitid=10006.

  42. Neuman, M. R., and Y. Kim. The undergraduate biomedical engineering curriculum: devices and instruments. Ann. Biomed. Eng. 34:226–231, 2006.

    Article  PubMed  Google Scholar 

  43. Newstetter, W. C. Designing cognitive apprenticeships for biomedical engineering. J. Eng. Educ. 94:207–213, 2005.

    Article  Google Scholar 

  44. Newstetter, W. C. Fostering integrative problem solving in biomedical engineering: the PBL approach. Ann. Biomed. Eng. 34:217–225, 2006.

    Article  PubMed  Google Scholar 

  45. Newstetter, W. C., E. Behravesh, N. J. Nersessian, and B. B. Fasse. Design principles for problem-driven learning laboratories in biomedical engineering education. Ann. Biomed. Eng. 38:3257–3267, 2010.

    Article  PubMed  Google Scholar 

  46. Nocera, T. M., A. Ortiz-Rosario, A. Shermadou, and D. A. Delaine. How do biomedical engineering graduates differ from other engineers? Bridging the gap between BME and industry: a case study. In: American Society for Engineering Education Conference and Exposition. Salt Lake City, UT, 2018. https://peer.asee.org/30578.

  47. Orr, M. K., N. M. Ramirez, and M. W. Ohland. Socioeconomic trends in engineering: enrollment, persistence, and academic achievement. In: American Society for Engineering Education. Vancouver, B.C., Canada, 2011. https://peer.asee.org/18499.

  48. Pandy, M., A. Petrosino, B. Austin, and R. Barr. Assessing adaptive expertise in undergraduate biomechanics. J. Eng. Educ. 93:211–222, 2004.

    Article  Google Scholar 

  49. Paschal, C. B., K. R. Nightingale, and K. M. Ropella. Undergraduate biomedical imaging education. Ann. Biomed. Eng. 34:232–238, 2006.

    Article  PubMed  Google Scholar 

  50. Perreault, E. J., M. Litt, and A. Saterbak. Educational methods and best practices in BME Laboratories. Ann. Biomed. Eng. 34:209–216, 2006.

    Article  PubMed  Google Scholar 

  51. Pilkington, T. C., F. M. Long, R. Plonsey, J. G. Webster, and W. Welkowitz. Status and trends in biomedical engineering education. IEEE Eng. Med. Biol. Mag. 8:9–17, 1989.

    Article  CAS  PubMed  Google Scholar 

  52. Ploss, B., T. S. Douglas, M. Glucksberg, E. E. Kaufmann, R. A. Malkin, J. McGrath, T. Mkandawire, M. Oden, A. Osuntoki, A. Rollins, K. Sienko, R. T. Ssekitoleko, and W. Reichert. Part II: U.S.-Sub-Saharan Africa educational partnerships for medical device design. Ann. Biomed. Eng. 45:2489–2493, 2017.

    Article  PubMed  Google Scholar 

  53. Ploss, B., and W. Reichert. Part I. The emergence of degree-granting biomedical engineering programs in Sub-Saharan Africa. Ann. Biomed. Eng. 45:2265–2268, 2017.

    Article  PubMed  Google Scholar 

  54. Potvin, A. R., F. M. Long, J. G. Webster, and R. J. Jendrucko. Biomedical-engineering education—enrollment, courses, degrees, and employment. IEEE Trans. Biomed. Eng. 28:22–28, 1981.

    Article  CAS  PubMed  Google Scholar 

  55. Prince, M. Does active learning work? A review of the research. J. Eng. Educ. 93:223–231, 2004.

    Article  Google Scholar 

  56. Prince, M. J., and R. M. Felder. Inductive teaching and learning methods: definitions, comparisons, and research bases. J. Eng. Educ. 95:123–138, 2006.

    Article  Google Scholar 

  57. Rayne, K., T. Martin, and S. Brophy. The development of adaptive expertise in biomedical engineering ethics. J. Eng. Educ. 95:165–174, 2006.

    Article  Google Scholar 

  58. Richards-Kortum, R., and M. Oden. Engineering devices for low-resource health care. Science 342:1055–1057, 2013.

    Article  CAS  PubMed  Google Scholar 

  59. Roselli, R. J., and S. P. Brophy. Redesigning a biomechanics course using challenge-based instruction. IEEE Eng. Med. Biol. Mag. 22:66–70, 2003.

    Article  PubMed  Google Scholar 

  60. Roselli, R., and S. Brophy. Effectiveness of challenge-based instruction in biomechanics. J. Eng. Educ. 95:311–324, 2006.

    Article  Google Scholar 

  61. Ruegsegger M. A. Work in progress: international BME capstone and summer design experience. In: American Society for Engineering Education. Indianapolis, IN, 2014. https://peer.asee.org/23323.

  62. Saltzman, M., and T. Desai. Drug delivery in the BME curricula. Ann. Biomed. Eng. 34:270–275, 2006.

    Article  PubMed  Google Scholar 

  63. Saterbak A., J. Jacot, and T. M. Volz. Implementation of problem-based learning in two sophomore bioengineering courses. In: Biomedical Engineering Society Annual Meeting. Austin, TX, 2010.

  64. Sax, L. J., K. Lim, K. Lehman, and L. Monje-Paulson. Reversal of the gender gap: the biological sciences as a unique case within science, technology, engineering, and mathematics (STEM). J. Women Minor. Sci. Eng. 24:291–324, 2018.

    Article  Google Scholar 

  65. Scheffer, C., M. Blanckenberg, B. Garth-Davis, and M. Eisenberg. Biomedical engineering education through global engineering teams. Conference proceedings: IEEE Engineering in Medicine and Biology Society. Conference 2012: 5058–5061, 2012

  66. Schreiner, S. Placement of bioengineering and biomedical engineering graduates. In: American Society for Engineering Education Annual Conference & Exposition. Portland, OR, 2005. https://peer.asee.org/15037

  67. Schwartz, D., J. Bransford, and D. Sears. Innovation and efficiency in learning and transfer. In: Transfer, edited by J. Mestre. Mahwah, NJ: Erlbaum, 2006, pp. 1–51.

    Google Scholar 

  68. Schwartz, D. L., S. Brophy, X. Lin, and J. D. Bransford. Software for managing complex learning: examples from an educational psychology course. Educ. Technol. Res. Dev. 47:39–59, 1999.

    Article  Google Scholar 

  69. Schwartz, M. D., and F. M. Long. Survey analysis of biomedical-engineering education. IEEE Trans. Biomed. Eng. BM22:119–124, 1975.

    Article  Google Scholar 

  70. Sienko, K. H., M. R. Young, E. E. Kaufmann, S. Obed, K. A. Danso, H. S. Opare-Addo, A. T. Odoi, C. A. Turpin, T. O. Konney, Z. Abebe, I. Mohedas, A. Huang-Saad, and T. R. B. Johnson. Global health design: clinical immersion, opportunity identification and definition, and design experiences. Int. J. Eng. Educ. 34:780–800, 2018.

    Google Scholar 

  71. US Department of Labor Bureau of Labor Statistics. Occupational Outlook Handbook, 2020. https://www.bls.gov/ooh/.

  72. Walker, J. M. T., D. S. Cordray, S. P. Brophy, and P. H. King. Developing an assessment of adaptive expertise in design at Vanderbilt University. Int. J. Eng. Educ. 22:645–651, 2006.

    Google Scholar 

  73. Waples, L. M., and K. M. Ropella. University-industry partnerships in biomedical engineering. IEEE Eng. Med. Biol. Mag. 22:118–121, 2003.

    Article  PubMed  Google Scholar 

  74. Whitaker Foundation. About the Whitaker Foundation. In: Program for the Biomedical Engineering Educational Summit. Landsdowne, VA, 2000. Unpublished.

  75. White, J. A., D. P. Gaver, R. J. Butera, Jr, B. Choi, M. J. Dunlop, K. J. Grande-Allen, A. Grosberg, R. W. Hitchcock, A. Y. Huang-Saad, M. Kotche, A. M. Kyle, A. L. Lerner, J. H. Linehan, R. A. Linsenmeier, M. I. Miller, J. A. Papin, L. Setton, A. Sgro, M. L. Smith, M. Zaman, and A. P. Lee. Core competencies for undergraduates in bioengineering and biomedical engineering: findings, consequences, and recommendations. Ann. Biomed. Eng. 48:905–912, 2020.

    Article  PubMed  Google Scholar 

  76. Yoder, B. L. Engineering by the numbers. Washington DC: American Society of Engineering Education, 2017. https://www.asee.org/papers-and-publications/publications/college-profiles.

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4