A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-020-02482-4 below:

Is There an Optimal Recovery Step Landing Zone Against Slip-Induced Backward Falls During Walking?

References
  1. Beschorner, K., and R. Cham. Impact of joint torques on heel acceleration at heel contact, a contributor to slips and falls. Ergonomics 51:1799–1813, 2008.

    CAS  PubMed  Google Scholar 

  2. Bhatt, T., and Y. C. Pai. Immediate and latent interlimb transfer of gait stability adaptation following repeated exposure to slips. J. Mot. Behav. 40:380–390, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhatt, T., J. D. Wening, and Y. C. Pai. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait Posture 21:146–156, 2005.

    CAS  PubMed  Google Scholar 

  4. Bhatt, T., J. D. Wening, and Y. C. Pai. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp. Brain Res. 170:61–73, 2006.

    CAS  PubMed  Google Scholar 

  5. Cheung, V. C. K., A. d’Avella, and E. Bizzi. Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. J. Neurophysiol. 101:1235–1257, 2009.

    PubMed  Google Scholar 

  6. Cooper, R. C., L. M. Prebeau-Menezes, M. T. Butcher, and J. E. A. Bertram. Step length and required friction in walking. Gait Posture 27:547–551, 2008.

    PubMed  Google Scholar 

  7. de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    PubMed  Google Scholar 

  8. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic Simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    PubMed  Google Scholar 

  9. Espy, D. D., F. Yang, T. Bhatt, and Y. C. Pai. Independent influence of gait speed and step length on stability and fall risk. Gait Posture 32:378–382, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaffney, B. M., M. D. Harris, B. S. Davidson, J. E. Stevens-Lapsley, C. L. Christiansen, and K. B. Shelburne. Multi-joint compensatory effects of unilateral total knee arthroplasty during high-demand tasks. Ann. Biomed. Eng. 44:2529–2541, 2016.

    PubMed  Google Scholar 

  11. Ghoussayni, S., C. Stevens, S. Durham, and D. Ewins. Assessment and validation of a simple automated method for the detection of gait events and intervals. Gait Posture 20:266–272, 2004.

    PubMed  Google Scholar 

  12. Grabiner, M. D., M. L. Bareither, S. Gatts, J. Marone, and K. L. Troy. Task-specific training reduces trip-related fall risk in women. Med. Sci. Sports Exerc. 44:2410–2414, 2012.

    PubMed  Google Scholar 

  13. Grabiner, M. D., T. J. Koh, T. M. Lundin, and D. W. Jahnigen. Kinematics of recovery from a stumble. J. Gerontol. 48:M97–M102, 1993.

    CAS  PubMed  Google Scholar 

  14. Hof, A. L. The ground reaction vector in walking passes always (almost) through the same point. J. Biomech. 46:631–632, 2013.

    PubMed  Google Scholar 

  15. Hsiao-Wecksler, E. T., and S. N. Robinovitch. The effect of step length on young and elderly women’s ability to recover balance. Clin. Biomech. 22:574–580, 2007.

    Google Scholar 

  16. King, G. W., C. W. Luchies, A. P. Stylianou, J. M. Schiffman, and D. G. Thelen. Effects of step length on stepping responses used to arrest a forward fall. Gait Posture 22:219–224, 2005.

    PubMed  Google Scholar 

  17. Lacquaniti, F., R. Grasso, and M. Zago. Motor patterns in walking. News Physiol. Sci. 14:168–174, 1999.

    PubMed  Google Scholar 

  18. Liu, X., S. Reschechtko, S. J. Wang, and Y. C. Pai. The recovery response to a novel unannounced laboratory-induced slip: THE “first trial effect” in older adults. Clin. Biomech. 48:9–14, 2017.

    Google Scholar 

  19. MacLean, J. G. B., and S. K. Reddy. The contralateral slip—an avoidable complication and indication for prophylactic, pinning in slipped upper femoral epiphysis. J. Bone Jt. Surg. Br. 88:1497–1501, 2006.

    CAS  Google Scholar 

  20. Mak, M. K. Y., F. Yang, and Y. C. Pai. Limb collapse, rather than instability, causes failure in sit-to-stand performance among patients with Parkinson disease. Phys. Ther. 91:381–391, 2011.

    PubMed  PubMed Central  Google Scholar 

  21. Maki, B. E., and W. E. McIlroy. The role of limb movements in maintaining upright stance: the “change-in-support” strategy. Phys. Ther. 77:488–507, 1997.

    CAS  PubMed  Google Scholar 

  22. Maki, B. E., W. E. McIlroy, and G. R. Fernie. Change-in-support reactions for balance recovery. IEEE Eng. Med. Biol. Mag. 22:20–26, 2003.

    PubMed  Google Scholar 

  23. Mansfield, A., E. L. Inness, J. S. Wong, J. E. Fraser, and W. E. McIlroy. Is Impaired control of reactive stepping related to falls during inpatient stroke rehabilitation? Neurorehabil. Neural Repair 27:526–533, 2013.

    PubMed  Google Scholar 

  24. Martelli, D., F. Aprigliano, P. Tropea, G. Pasquini, S. Micera, and V. Monaco. Stability against backward balance loss: age-related modifications following slip-like perturbations of multiple amplitudes. Gait Posture 53:207–214, 2017.

    PubMed  Google Scholar 

  25. Maus, H. M., S. W. Lipfert, M. Gross, J. Rummel, and A. Seyfarth. Upright human gait did not provide a major mechanical challenge for our ancestors. Nat. Commun. 1(1):1–6, 2010.

    Google Scholar 

  26. Neptune, R. R., S. A. Kautz, and F. E. Zajac. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34:1387–1398, 2001.

    CAS  PubMed  Google Scholar 

  27. Pai, Y. C. Movement termination and stability in standing. Exerc. Sport Sci. Rev. 31:19–25, 2003.

    PubMed  Google Scholar 

  28. Pai, Y.-C., and J. L. Patton. Center of mass velocity-position predictions for balance control. J. Biomech. 30:347–354, 1997.

    CAS  PubMed  Google Scholar 

  29. Pai, Y. C., F. Yang, T. Bhatt, and E. Wang. Learning from laboratory-induced falling: long-term motor retention among older adults. Age 36:1367–1376, 2014.

    Google Scholar 

  30. Pai, Y. C., F. Yang, J. D. Wening, and M. J. Pavol. Mechanisms of limb collapse following a slip among young and older adults. J. Biomech. 39:2194–2204, 2006.

    PubMed  Google Scholar 

  31. Pavol, M. J., T. M. Owings, K. T. Foley, and M. D. Grabiner. Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. Ser. A 56:M428–M437, 2001.

    CAS  Google Scholar 

  32. Pavol, M. J., and Y. C. Pai. Deficient limb support is a major contributor to age differences in falling. J. Biomech. 40:1318–1325, 2007.

    PubMed  Google Scholar 

  33. Piazza, S. J., and S. L. Delp. The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29:723–733, 1996.

    CAS  PubMed  Google Scholar 

  34. Prilutsky, B. I., R. J. Gregor, and M. M. Ryan. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running. Exp. Brain Res. 120:479–486, 1998.

    CAS  PubMed  Google Scholar 

  35. Wang, S., X. Liu, A. Lee, and Y.-C. Pai. Can recovery foot placement affect older adults’ slip-fall severity? Ann. Biomed. Eng. 45(8):1941–1948, 2017.

    PubMed  PubMed Central  Google Scholar 

  36. Wang, S. J., X. Liu, and Y. C. Pai. Limb collapse or instability? Assessment on cause of falls. Ann. Biomed. Eng. 47:767–777, 2019.

    PubMed  PubMed Central  Google Scholar 

  37. Winter, D. A. CNS strategies in human gait: implication for FES control. Automedica 11:163–174, 1989.

    Google Scholar 

  38. Winter, D. A. Foot trajectory in human gait: a precise and multifactorial motor control task. Phys. Ther. 72:45–53, 1992; (discussion 54–46).

    CAS  PubMed  Google Scholar 

  39. Yamaguchi, T., and K. Masani. Contribution of center of mass–center of pressure angle tangent to the required coefficient of friction in the sagittal plane during straight walking. Biotribology 5:16–22, 2016.

    Google Scholar 

  40. Yang, F., F. C. Anderson, and Y. C. Pai. Predicted threshold against backward balance loss in gait. J. Biomech. 40:804–811, 2007.

    PubMed  Google Scholar 

  41. Yang, F., F. C. Anderson, and Y. C. Pai. Predicted threshold against backward balance loss following a slip in gait. J. Biomech. 41:1823–1831, 2008.

    PubMed  PubMed Central  Google Scholar 

  42. Yang, F., T. Bhatt, and Y. C. Pai. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J. Biomech. 42:1903–1908, 2009.

    PubMed  PubMed Central  Google Scholar 

  43. Yang, F., D. Espy, and Y. C. Pai. Feasible stability region in the frontal plane during human gait. Ann. Biomed. Eng. 37:2606–2614, 2009.

    PubMed  PubMed Central  Google Scholar 

  44. Yang, F., and Y. C. Pai. Automatic recognition of falls in gait-slip training: Harness load cell based criteria. J. Biomech. 44:2243–2249, 2011.

    PubMed  PubMed Central  Google Scholar 

  45. Yu, B., D. Gabriel, L. Noble, and K. N. An. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J. Appl. Biomech. 15:318–329, 1999.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4