Brown, P. M., D. T. Zelt, and B. Sobolev. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J. Vasc. Surg. 37(2):280–284, 2003.
Chaikof, E. L., R. L. Dalman, M. K. Eskandari, B. M. Jackson, W. A. Lee, M. A. Mansour, T. M. Mastracci, M. Mell, M. H. Murad, L. L. Nguyen, G. S. Oderich, M. S. Patel, M. L. Schermerhorn, and B. W. Starnes. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 67(1):2–77, 2018.
Cui, S. S., L. K. Zhao, Y. M. Wang, Q. Dong, J. X. Ma, Y. Wang, W. Zhao, and X. Ma. Using Naive Bayes classifier to predict osteonecrosis of the femoral head with cannulated screw fixation. Injury. 49(10):1865–1870, 2018.
Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 56(3 Suppl):II161–II164, 1977.
Endo, A., A. Shiraishi, K. Fushimi, K. Murata, and Y. Otomo. Outcomes of patients receiving a massive transfusion for major trauma. Br. J. Surg. 105(11):1426–1434, 2018.
Farag, A. A., A. Ali, and S. Elshazly. Feature fusion for lung nodule classification. Int. J. CARS. 12(10):1809–1818, 2017.
Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36(3):589–597, 2002.
Gasser, T. C. Biomechanical rupture risk assessment: a consistent and objective decision-making tool for abdominal aortic aneurysm patients. Aorta. 4(2):42–60, 2016.
Jeong, C., J. H. Min, and M. S. Kim. A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction. Expert Syst. Appl. 39(3):3650–3658, 2012.
Larsson, E., F. Labruto, T. C. Gasser, J. Swedenborg, and R. Hultgren. Analysis of aortic wall stress and rupture risk in patients with abdominal aortic aneurysm with a gender perspective. J. Vasc. Surg. 54(2):295–299, 2011.
Lau, L., Y. Kankanige, B. Rubinstein, R. Jones, C. Christophi, V. Muralidharan, and J. Bailey. Machine-learning algorithms predict graft failure after liver transplantation. Transplantation. 101(4):E125–E132, 2017.
Leathwick, J. R., J. Elith, and T. Hastie. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199(2):188–196, 2006.
Lee, K., J. Zhu, J. Shum, Y. Zhang, S. C. Muluk, A. Chandra, M. K. Eskandari, and E. A. Finol. Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis. Ann. Biomed. Eng. 41:562–576, 2013.
Leemans, E. L., T. P. Willems, C. H. Slump, M. J. van der Laan, and C. J. Zeebregts. Additional value of biomechanical indices based on CTA for rupture risk assessment of abdominal aortic aneurysms. PLoS ONE. 13(8):e0202672, 2018.
Maier, A., M. Gee, C. Reeps, J. Pongratz, H.-H. Eckstein, and W. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.
Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131(6):061015, 2009.
Mastracci, T. M., L. Garrido-Olivares, C. S. Cinà, and C. M. Clase. Endovascular repair of ruptured abdominal aortic aneurysms: a systematic review and meta-analysis. J. Vasc. Surg. 47(1):214–221, 2008.
Min, K. W., D. H. Kim, B. K. Son, E. K. Kim, S. B. Ahn, S. H. Kim, Y. J. Jo, Y. S. Park, J. Seo, Y. H. Oh, S. Oh, H. Y. Kim, M. J. Kwon, S. K. Min, H. R. Park, J. Y. Choe, J. Y. Jeon, H. I. Ha, and J. W. Lee. Invasion depth measured in millimeters is a predictor of survival in patients with distal bile duct cancer: decision tree approach. World J. Surg. 41(1):232–240, 2017.
Mower, W. R., L. J. Baraff, and J. Sneyd. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res. 55(2):155–161, 1993.
Parikh, S. A., R. Gomez, M. Thirugnanasambandam, S. S. Chauhan, V. De Oliveira, S. C. Muluk, M. K. Eskandari, and E. A. Finol. Decision tree based classification of abdominal aortic aneurysms using geometry quantification measures. Ann. Biomed. Eng. 46:2135–2147, 2018.
Polzer, S., and T. C. Gasser. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J. R. Soc. Interface. 12(113):20150852, 2015.
Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.
Raut, S. S., P. Liu, and E. A. Finol. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling. J. Biomech. 48(10):1972–1981, 2015.
Shum, J., E. S. Di Martino, A. Goldhammer, D. H. Goldman, L. C. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37(2):638–648, 2010.
Shum, J., G. Martufi, E. S. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39:277–286, 2011.
Tang, A., C. Kauffmann, S. Tremblay-Paquet, S. Elkouri, O. Steinmetz, F. Morin-Roy, L. Cloutier-Gill, and G. Soulez. Morphologic evaluation of ruptured and symptomatic abdominal aortic aneurysm by three-dimensional modeling. J. Vasc. Surg. 59(4):894–902, 2014.
Wijeysundera, D. N., K. Karkouti, J. Y. Dupuis, V. Rao, C. T. Chan, J. T. Granton, and W. S. Beattie. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 297(16):1801–1809, 2007.
Xenos, M., S. H. Rambhia, Y. Alemu, S. Einav, N. Labropoulos, A. Tassiopoulos, J. J. Ricotta, and D. Bluestein. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38(11):3323–3337, 2010.
Zheng, S. F., and W. X. Liu. An experimental comparison of gene selection by Lasso and Dantzig selector for cancer classification. Comput. Biol. Med. 41(11):1033–1040, 2011.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4