Abraham, A. C., L. K. Cheng, T. R. Angeli, S. Alighaleh, and N. Paskaranandavadivel. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping. Neurogastroenterol. Motil. 31:e13670, 2019.
Alighaleh, S., L. K. Cheng, T. R. Angeli, M. Amiri, S. Sathar, G. O’Grady, and N. Paskaranandavadivel. A novel gastric pacing device to modulate slow waves and assessment by high-resolution mapping. IEEE Trans. Biomed. Eng. 2019. https://doi.org/10.1109/tbme.2019.2896624.
Alvarez, W. C. The electrogastrogram and what it shows. J. Am. Med. Assoc. 78:1116–1119, 1922.
Alvarez, W. C., and L. J. Mahoney. Action currents in stomach and intestine. Am. J. Physiol. 58:476–493, 1922.
Angeli, T. R., P. Du, N. Paskaranandavadivel, P. W. M. Janssen, A. Beyder, R. G. Lentle, I. P. Bissett, L. K. Cheng, and G. O’Grady. The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J. Physiol. 591:4567–4579, 2013.
Angeli, T. R., G. O’Grady, N. Paskaranandavadivel, J. C. Erickson, P. Du, A. J. Pullan, I. P. Bissett, and L. K. Cheng. Experimental and automated analysis techniques for high-resolution electrical mapping of small intestine slow wave activity. J. Neurogastroenterol. Motil. 19:179–191, 2013.
Angeli, T. R., L. K. Cheng, P. Du, T. H.-H. Wang, C. E. Bernard, M.-G. Vannucchi, M. S. Faussone-Pellegrini, C. Lahr, R. Vather, J. A. Windsor, G. Farrugia, T. L. Abell, and G. O’Grady. Loss of interstitial cells of Cajal and patterns of gastric dysrhythmia in patients with chronic unexplained nausea and vomiting. Gastroenterology 149:56–66.e5, 2015.
Angeli, T. R., P. Du, N. Paskaranandavadivel, A. Hall, S. J. Asirvatham, G. Farrugia, J. A. Windsor, L. K. Cheng, and G. O’Grady. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface. Neurogastroenterol. Motil. 29:e13010, 2017.
Angeli, T. R., G. O’Grady, R. Vather, I. P. Bissett, and L. K. Cheng. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: feasibility and initial results. Neurogastroenterol. Motil. 2018. https://doi.org/10.1111/nmo.13310.
Babb, T. L., and W. Kupfer. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp. Neurol. 86:171–182, 1984.
Berry, R., N. Paskaranandavadivel, P. Du, M. L. Trew, G. O’Grady, J. A. Windsor, and L. K. Cheng. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surg. Endosc. 31:477–486, 2016.
Berry, R., L. K. Cheng, P. Du, N. Paskaranandavadivel, T. R. Angeli, T. Mayne, G. Beban, and G. O’Grady. Patterns of abnormal gastric pacemaking after sleeve gastrectomy defined by laparoscopic high-resolution electrical mapping. Obes. Surg. 27:1929–1937, 2017.
Bihar, E., T. Roberts, E. Ismailova, M. Saadaoui, M. Isik, A. Sanchez-Sanchez, D. Mecerreyes, T. Hervé, J. B. De Graaf, and G. G. Malliaras. Fully printed electrodes on stretchable textiles for long-term electrophysiology. Adv. Mater. Tech. 2:2–6, 2017.
Bozler, E. The action potentials of the stomach. Am. J. Physiol. 144:693–700, 1945.
Code, C. F., and J. A. Marlett. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J. Physiol. 246:289–309, 1975.
Du, P., G. O’Grady, J. U. Egbuji, W. J. E. P. Lammers, D. Budgett, P. Nielsen, J. A. Windsor, A. J. Pullan, and L. K. Cheng. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37:839–846, 2009.
Du, P., A. Hameed, T. R. Angeli, C. Lahr, T. L. Abell, L. K. Cheng, and G. O’Grady. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol. Motil. 27:1409–1422, 2015.
Du, P., N. Paskaranandavadivel, T. R. Angeli, L. K. Cheng, and G. O’Grady. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. WIREs Syst. Biol. Med. 8:69–85, 2016.
Du, P., S. Calder, T. R. Angeli, S. Sathar, N. Paskaranandavadivel, G. O’Grady, and L. K. Cheng. Progress in mathematical modeling of gastrointestinal slow wave abnormalities. Front. Physiol. 8:1136, 2018.
Egbuji, J. U., G. O’Grady, P. Du, L. K. Cheng, W. J. E. P. Lammers, J. A. Windsor, and A. J. Pullan. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol. Motil. 22:e292–e300, 2010.
Erickson, J. C., G. O’Grady, P. Du, C. Obioha, W. Qiao, W. O. Richards, L. A. Bradshaw, A. J. Pullan, and L. K. Cheng. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings. Ann. Biomed. Eng. 38:1511–1529, 2010.
Hammad, F. T., B. Stephen, L. Lubbad, J. F. B. Morrison, and W. J. Lammers. Macroscopic electrical propagation in the guinea pig urinary bladder. Am. J. Physiol. Ren. Physiol. 307:F172–F182, 2014.
Hinder, R. A., and K. A. Kelly. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am. J. Surg. 133:29–33, 1977.
Huizinga, J. D., and W. J. E. P. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1–G8, 2009.
Lammers, W. J. E. P., A. Al-Kais, S. Singh, K. Arafat, and T. Y. El-Sharkawy. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J. Appl. Phys. 74:1454–1461, 1993.
Lammers, W. J. E. P., L. Ver Donck, J. A. J. Schuurkes, and B. Stephen. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo. Can. J. Physiol. Pharmacol. 83:1031–1043, 2005.
Lammers, W. J. E. P., L. Ver Donck, B. Stephen, D. Smets, and J. A. J. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.
Lammers, W. J. E. P., L. Ver Donck, B. Stephen, D. Smets, and J. A. J. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1200–G1210, 2009.
Lammers, W. J. E. P., B. Stephen, M. A. Al-Sultan, S. B. Subramanya, and A. M. Blanks. The location of pacemakers in the uteri of pregnant guinea pigs and rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:R1439–R1446, 2015.
McAdams, E. Bioelectrodes. In: Encyclopedia of Medical Devices and Instrumentation, edited by J. G. Webster. New York: Wiley, 2006, pp. 120–166.
O’Grady, G., N. Paskaranandavadivel, T. R. Angeli, P. Du, J. A. Windsor, L. K. Cheng, and A. J. Pullan. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiol. Meas. 32:N13–N22, 2011.
O’Grady, G., T. R. Angeli, P. Du, C. Lahr, W. J. E. P. Lammers, J. A. Windsor, T. L. Abell, G. Farrugia, A. J. Pullan, and L. K. Cheng. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143(589–598):e1–e3, 2012.
O’Grady, G., T. R. Angeli, N. Paskaranandavadivel, J. C. Erickson, C. Wells, A. A. Gharibans, L. K. Cheng, and P. Du. Methods for high-resolution electrical mapping in the gastrointestinal tract. IEEE Rev. Biomed. Eng. 12:287–302, 2019.
Paskaranandavadivel, N., L. K. Cheng, P. Du, G. O’Grady, and A. J. Pullan. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1:1737–1740, 2011.
Paskaranandavadivel, N., G. O’Grady, P. Du, A. J. Pullan, and L. K. Cheng. An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE. Trans. Biomed. Eng. 59:882–889, 2012.
Paskaranandavadivel, N., G. O’Grady, P. Du, and L. K. Cheng. Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol. Motil. 25:79–83, 2013.
Paskaranandavadivel, N., X. Pan, P. Du, G. O’Grady, and L. K. Cheng. Detection of the recovery phase of in vivo gastric slow wave recordings. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1:6094–6097, 2015.
Putney, J., G. O’Grady, T. R. Angeli, N. Paskaranandavadivel, L. K. Cheng, J. C. Erickson, and P. Du. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1448–1451:2015, 2015.
Spach, M. S., R. C. Barr, J. W. Havstad, and E. C. Long. Skin-electrode impedance and its effect on recording cardiac potentials. Circulation 34:649–656, 1966.
Stinnett-Donnelly, J. M., N. Thompson, N. Habel, V. Petrov-Kondratov, D. D. Correa De Sa, J. H. T. Bates, and P. S. Spector. Effects of electrode size and spacing on the resolution of intracardiac electrograms. Coron. Artery Dis. 23:126–132, 2012.
Vosgueritchian, M., D. J. Lipomi, and Z. Bao. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22:421–428, 2012.
Yassi, R., G. O’Grady, N. Paskaranandavadivel, P. Du, T. R. Angeli, A. J. Pullan, L. K. Cheng, and J. C. Erickson. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol. 12:60, 2012.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4