Abiri, P., A. Abiri, R. R. S. Packard, Y. Ding, A. Yousefi, J. Ma, M. Bersohn, K.-L. Nguyen, D. Markovic, S. Moloudi, and T. K. Hsiai. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci. Rep. 7:6180, 2017.
Agrawal, D. R., Y. Tanabe, D. Weng, A. Ma, S. Hsu, S. Y. Liao, Z. Zhen, Z. Y. Zhu, C. Sun, Z. Dong, F. Yang, H. F. Tse, A. S. Y. Poon, and J. S. Ho. Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 2017. https://doi.org/10.1038/s41551-017-0043.
Ali, H., T. J. Ahmad, and S. A. Khan. Inductive Link Design for Medical Implants, 2009.
Auricchio, A., P. P. Delnoy, F. Regoli, M. Seifert, T. Markou, and C. Butter. First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system: novel endocardial left ventricular resynchronization therapy in heart failure patients. Europace 15:1191–1197, 2013.
Bakogianni, S., and S. Koulouridis. Sub-1 GHz far-field powering of implantable medical devices: design and safety considerations, 2015.
Chen, S. C. Q., and V. Thomas. Optimization of Inductive RFID Technology. In: Int. Symp. Electron. Environ, 2001, pp. 82–87.
Cleveland, R. F., D. M. Sylvar, and J. L. Ulcek. Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Washington, D.C., 1997.
FDA Executive Summary Memorandum General Issues: Leadless Pacemaker Devices. Gaithersburg, 2016.
Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. Chippenham: Wiley, 2010. https://doi.org/10.1002/9780470665121.
Grandolfo, M., P. Vecchia, and O. P. Gandhi. Magnetic resonance imaging: calculation of rates of energy absorption by a human-torso model. Bioelectromagnetics 11:117–128, 1990.
Grover, F. W. Inductance calculations: working formulas and tables. Instrum. Soc. Am., 1946.
Heetderks, W. J. RF powering of millimeter- and submillimeter-sized neural prosthetic implants. IEEE Trans. Biomed. Eng. 35:323–327, 1988.
Ho, J. S., A. J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R. E. Beygui, and A. S. Y. Poon. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 111:7974–7979, 2014.
Hwang, G. T., H. Park, J. H. Lee, S. Oh, K. Il Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, H. Kwon, S. G. Lee, B. Joung, and K. J. Lee. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26:4880–4887, 2014.
Jeon, D., Y. Chen, Y. Lee, Y. Kim, Z. Foo, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, and D. Sylvester. An implantable 64nW ECG-monitoring mixed-signal soc for arrhythmia diagnosis, 2014.
Jow, U., and M. Ghovanloo. Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. Optimization 1:193–202, 2008.
Karami, M. A., and D. J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100:042901, 2012.
Kiani, M., U. M. Jow, and M. Ghovanloo. Design and optimization of a 3 coil inductive link for efficient wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 5:579–591, 2011.
Kim, S., J. S. Ho, L. Y. Chen, and A. S. Y. Poon. Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 101:1–5, 2012.
Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic. Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86, 2007.
Lee, H. M., and M. Ghovanloo. A power-efficient wireless capacitor charging system through an inductive link. IEEE Trans. Circuits Syst. II Express Briefs 60:707–711, 2013.
Lee, B., M. Kiani, and M. Ghovanloo. A triple-loop inductive power transmission system for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 10:138–148, 2016.
Lee, S. Y., M. Y. Su, M. C. Liang, Y. Y. Chen, C. H. Hsieh, C. M. Yang, H. Y. Lai, J. W. Lin, and Q. Fang. A programmable implantable microstimulator soc with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans. Biomed. Circuits Syst. 5:511–522, 2011.
Li, X., C. Y. Tsui, and W. H. Ki. A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE J. Solid-State Circuits 50:978–989, 2015.
Loeb, G. E., C. J. Zamin, J. H. Schulman, and P. R. Troyk. Injectable microstimulator for functional electrical stimulation. Med. Biol. Eng. Comput. 1991. https://doi.org/10.1007/BF02446097.
Mela, T., and J. P. Singh. Leadless pacemakers: leading us into the future? Eur. Heart J. 36:2520–2522, 2015.
MicraTM MC1VR01 Clinical Manual. Minneapolis, 2016.
Monti, G., L. Tarricone, and C. Trane. Experimental characterization of a 434 MHz wireless energy link for medical applications. Prog. Electromagn. Res. C 30:53–64, 2012.
Neagu, C. R., H. V. Jansen, A. Smith, J. G. E. Gardeniers, and M. C. Elwenspoek. Characterization of a planar microcoil for implantable microsystems. Sens Actuators A 62:599–611, 1997.
Ouyang, H., Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z. L. Wang, H. Zhang, and Z. Li. Symbiotic cardiac pacemaker. Nat. Commun. 10:1821, 2019.
Parramon, J., P. Doguet, D. Marin, M. Verleyssen, R. Munoz, L. Leija, and E. Valderrama. ASIC-based batteryless implantable telemetry microsystem for recording purposes, 1997.
RamRakhyani, A. K., S. Mirabbasi, and M. Chiao. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5:48–63, 2011.
Seol, S. J., H. Cho, D. H. Yoon, and S. H. Jang. Appropriate depth of needle insertion during rhomboid major trigger point block. Ann. Rehabil. Med. 38:72–76, 2014.
Sperzel, J., H. Burri, D. Gras, F. V. Y. Tjong, R. E. Knops, G. Hindricks, C. Steinwender, and P. Defaye. State of the art of leadless pacing. Europace 17:1508–1513, 2015.
Sun, J. P., X. S. Yang, Y. Y. Lam, M. J. Garcia, and C. M. Yu. Evaluation of coronary venous anatomy by multislice computed tomography. World J. Cardiovasc. Surg. 2:91–95, 2012.
Udo, E. O., N. P. A. Zuithoff, N. M. Van Hemel, C. C. De Cock, T. Hendriks, P. A. Doevendans, and K. G. M. Moons. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Hear Rhythm 9:728–735, 2012.
Vest, A. N., L. Zhou, X. Huang, V. Norekyan, Y. Bar-Cohen, R. H. Chmait, and G. E. Loeb. Design and testing of a transcutaneous RF recharging system for a fetal micropacemaker. IEEE Trans. Biomed. Circuits Syst. 2017. https://doi.org/10.1109/TBCAS.2016.2620805.
Von Arx, J. A., and K. Najafi. A wireless single-chip telemetry-powered neural stimulation system. In: 1999 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. ISSCC. First Ed. (Cat. No.99CH36278), pp. 214–215, 1999.https://doi.org/10.1109/isscc.1999.759199
Welsby, V. G. The Theory and Design of Inductance Coils. London: Wiley, 1960.
Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Nääs. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid State Circuits 39:2446–2456, 2004.
Xi Nan, and C. R. Sullivan. An improved calculation of proximity-effect loss in high-frequency windings of round conductors, 2003. https://doi.org/10.1109/pesc.2003.1218168
Zhang, Z., K. T. Chau, C. Qiu, and C. Liu. Energy encryption for wireless power transfer. IEEE Trans. Power Electron. 30:5237–5246, 2015.
Zhong, W., C. K. Lee, and S. Y. Ron Hui. General analysis on the use of tesla’s resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 60:261–270, 2013.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4