Adamson, R. H., J. F. Lenz, X. Zhang, G. N. Adamson, S. Weinbaum, and F. E. Curry. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557:889–907, 2004.
Arkill, K. P., C. Knupp, C. C. Michel, C. R. Neal, K. Qvortrup, J. Rostgaard, and J. M. Squire. Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys. J. 101:1046–1056, 2011.
Attwell, D., A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman. Glial and neuronal control of brain blood flow. Nature. 468:232–243, 2010.
Bai, H., J. V. Forrester, and M. Zhao. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. Cytokine. 55:110–115, 2011.
Bikson, M., P. Grossman, C. Thomas, A. L. Zannou, J. Jiang, T. Adnan, A. P. Mourdoukoutas, G. Kronberg, D. Truong, P. Boggio, A. R. Brunoni, L. Charvet, F. Fregni, B. Fritsch, B. Gillick, R. H. Hamilton, B. M. Hampstead, R. Jankord, A. Kirton, H. Knotkova, D. Liebetanz, A. Liu, C. Loo, M. A. Nitsche, J. Reis, J. D. Richardson, A. Rotenberg, P. E. Turkeltaub, and A. J. Woods. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9:641–661, 2016.
Boggio, P. S., F. Bermpohl, A. O. Vergara, A. L. Muniz, F. H. Nahas, P. B. Leme, S. P. Rigonatti, and F. Fregni. Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression. J. Affect. Disord. 101:91–98, 2007.
Brunoni, A. R., M. A. Nitsche, N. Bolognini, M. Bikson, T. Wagner, L. Merabet, D. J. Edwards, A. Valero-Cabre, A. Rotenberg, A. Pascual-Leone, R. Ferrucci, A. Priori, P. S. Boggio, and F. Fregni. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 5:175–195, 2012.
Busija, D. W., F. Bari, F. Domoki, and T. Louis. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res. Rev. 56:89–100, 2007.
Cancel, L. M., K. Arias, M. Bikson, and J. M. Tarbell. Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect. Sci. Rep. 8:9265, 2018.
Duran, W. N., J. W. Breslin, and F. A. Sanchez. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res. 87:254–261, 2010.
Easton, A. S., M. H. Sarker, and P. A. Fraser. Two components of blood-brain barrier disruption in the rat. J. Physiol. 503(Pt 3):613–623, 1997.
Farkas, E., and P. G. Luiten. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog. Neurobiol. 64:575–611, 2001.
Forstermann, U., and W. C. Sessa. Nitric oxide synthases: regulation and function. Eur. Heart J. 33(829–37):837, 2012.
Jackson, M. P., D. Truong, M. L. Brownlow, J. A. Wagner, R. A. McKinley, M. Bikson, and R. Jankord. Safety parameter considerations of anodal transcranial direct current stimulation in rats. Brain Behav. Immun. 64:152–161, 2017.
Kimura, M., H. H. Dietrich, V. H. Huxley, D. R. Reichner, and R. G. Dacey, Jr. Measurement of hydraulic conductivity in isolated arterioles of rat brain cortex. Am. J. Physiol. 264:H1788–H1797, 1993.
Li, G., M. J. Simon, L. M. Cancel, Z. D. Shi, X. Ji, J. M. Tarbell, B. Morrison, 3rd, and B. M. Fu. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38:2499–2511, 2010.
Li, G., W. Yuan, and B. M. Fu. A model for the blood-brain barrier permeability to water and small solutes. J. Biomech. 43:2133–2140, 2010.
Liebetanz, D., R. Koch, S. Mayenfels, F. Konig, W. Paulus, and M. A. Nitsche. Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 120:1161–1167, 2009.
Marceglia, S., S. Mrakic-Sposta, M. Rosa, R. Ferrucci, F. Mameli, M. Vergari, M. Arlotti, F. Ruggiero, E. Scarpini, D. Galimberti, S. Barbieri, and A. Priori. Transcranial direct current stimulation modulates cortical neuronal activity in Alzheimer’s disease. Front. Neurosci. 10:134, 2016.
Marquez-Ruiz, J., R. Leal-Campanario, R. Sanchez-Campusano, B. Molaee-Ardekani, F. Wendling, P. C. Miranda, G. Ruffini, A. Gruart, and J. M. Delgado-Garcia. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc. Natl. Acad. Sci. USA. 109:6710–6715, 2012.
Mayhan, W. G. Inhibition of nitric oxide synthase does not alter basal permeability of the blood-brain barrier. Brain Res. 855:143–149, 2000.
Mielke, D., A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, V. Rohde, and D. Liebetanz. Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurol. Res. 35:1029–1037, 2013.
Monai, H., M. Ohkura, M. Tanaka, Y. Oe, A. Konno, H. Hirai, K. Mikoshiba, S. Itohara, J. Nakai, Y. Iwai, and H. Hirase. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat. Commun. 7:11100, 2016.
Nitsche, M. A., and W. Paulus. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 57:1899–1901, 2001.
Schulze, C., and J. A. Firth. Interendothelial junctions during blood-brain barrier development in the rat: morphological changes at the level of individual tight junctional contacts. Brain Res. Dev. Brain Res. 69:85–95, 1992.
Shi, L., M. Zeng, and B. M. Fu. Temporal effects of vascular endothelial growth factor and 3,5-cyclic monophosphate on blood-brain barrier solute permeability in vivo. J. Neurosci. Res. 92:1678–1689, 2014.
Shi, L., M. Zeng, Y. Sun, and B. M. Fu. Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J. Biomech. Eng. 136:031005, 2014.
Stagg, C. J., R. L. Lin, M. Mezue, A. Segerdahl, Y. Kong, J. Xie, and I. Tracey. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J. Neurosci. 33:11425–11431, 2013.
Sugihara-Seki, M., and B. M. M. Fu. Blood flow and permeability in microvessels. Fluid Dyn. Res. 37:82–132, 2005.
Trivedi, D. P., K. J. Hallock, and P. R. Bergethon. Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production. Bioelectromagnetics. 34:22–30, 2013.
Wang, Y., Y. Hao, J. Zhou, P. J. Fried, X. Wang, J. Zhang, J. Fang, A. Pascual-Leone, and B. Manor. Direct current stimulation over the human sensorimotor cortex modulates the brain’s hemodynamic response to tactile stimulation. Eur. J. Neurosci. 42:1933–1940, 2015.
Yuan, W., Y. Lv, M. Zeng, and B. M. Fu. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc. Res. 77:166–173, 2009.
Zeng, Y., X. F. Zhang, B. M. Fu, and J. M. Tarbell, The role of endothelial surface glycocalyx in mechanosensing and transduction. In: Molecular, Cellular, and Tissue Engineering of the Vascular System. Springer. pp. 1–27, 2018.
Zhang, L., M. Zeng, and B. M. Fu. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am. J. Physiol. Heart Circ. Physiol. 310:H1735–H1747, 2016.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4