Azarin, S. M., J. Yi, R. M. Gower, B. A. Aguado, M. E. Sullivan, A. G. Goodman, E. J. Jiang, S. S. Rao, Y. Ren, S. L. Tucker, V. Backman, J. S. Jeruss, and L. D. Shea. In vivo capture and label-free detection of early metastatic cells. Nat. Commun. 6:8094, 2015.
Bersani, F., J. Lee, M. Yu, R. Morris, R. Desai, S. Ramaswamy, M. Toner, D. A. Haber, and B. Parekkadan. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res. 74:7229–7238, 2014.
Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.
Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.
de la Fuente, A., L. Alonso-Alconada, C. Costa, J. Cueva, T. Garcia-Caballero, R. Lopez-Lopez, and M. Abal. M-Trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J. Natl. Cancer Inst. 107:djv184, 2015.
Faes, T. J. C., H. A. van der Meij, J. C. de Munck, and R. M. Heethaar. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol. Meas. 20:R1–R10, 1999.
Fernández-Periáñez, R., I. Molina-Privado, F. Rojo, I. Guijarro-Muñoz, V. Alonso-Camino, S. Zazo, M. Compte, A. Álvarez-Cienfuegos, A. M. Cuesta, D. Sánchez-Martín, A. M. Álvarez-Méndez, L. Sanz, and L. Álvarez-Vallina. Basement membrane-rich organoids with functional human blood vessels are permissive niches for human breast cancer metastasis. PLoS ONE 8:e72957, 2013.
Fujino, T., Y. Yokoyama, and Y. H. Mori. Augmentation of laminar forced-convective heat transfer by the application of a transverse electric field. J. Heat Transfer 111:345, 1989.
Goswami, I., S. Coutermarsh-Ott, R. G. Morrison, I. C. Allen, R. V. Davalos, S. S. Verbridge, and L. R. Bickford. Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells. Bioelectrochemistry 113:42–50, 2017.
He, C., J. Wang, S. Sun, Y. Zhang, and S. Li. Immunomodulatory effect after irreversible electroporation in patients with locally advanced pancreatic cancer. J. Oncol. 2019. https://doi.org/10.1155/2019/9346017.
Jiang, C., R. V. Davalos, and J. C. Bischof. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans. Biomed. Eng. 62:4–20, 2015.
Jiang, C., Q. Shao, and J. Bischof. Pulse timing during irreversible electroporation achieves enhanced destruction in a hindlimb model of cancer. Ann. Biomed. Eng. 43:887–895, 2015.
Kandušer, M., M. Šentjurc, and D. Miklavčič. Cell membrane fluidity related to electroporation and resealing. Eur. Biophys. J. 35:196–204, 2006.
Ko, C.-Y., L. Wu, A. M. Nair, Y.-T. Tsai, V. K. Lin, and L. Tang. The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 33:876–885, 2012.
Miklavčič, D., N. Pavšelj, and F. X. Hart. Electric properties of tissues. In: Wiley Encyclopedia of Biomedical Engineering, edited by M. Akay. New York: Wiley, 2006.
Moreau, J. E., K. Anderson, J. R. Mauney, T. Nguyen, D. L. Kaplan, and M. Rosenblatt. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res. 67:10304–10308, 2007.
Narayanan, J. S. S., P. Ray, T. Hayashi, T. C. Whisenant, D. Vicente, D. A. Carson, A. M. Miller, S. P. Schoenberger, and R. R. White. Irreversible electroporation combined with checkpoint blockade and TLR7 stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol. Res. 7:1714–1726, 2019.
Neal, R. E., J. H. Rossmeisl, J. L. Robertson, C. B. Arena, E. M. Davis, R. N. Singh, J. Stallings, and R. V. Davalos. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS ONE 8:e64559, 2013.
Pelaez, F., N. Manuchehrabadi, P. Roy, H. Natesan, Y. Wang, E. Racila, H. Fong, K. Zeng, A. M. Silbaugh, J. C. Bischof, and S. M. Azarin. Biomaterial scaffolds for non-invasive focal hyperthermia as a potential tool to ablate metastatic cancer cells. Biomaterials 166:27–37, 2018.
Poste, G., J. Doll, I. R. Hart, and I. J. Fidler. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 40:1636–1644, 1980.
Rao, S. S., G. G. Bushnell, S. M. Azarin, G. Spicer, B. A. Aguado, J. R. Stoehr, E. J. Jiang, V. Backman, L. D. Shea, and J. S. Jeruss. Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer Res. 76:5209–5218, 2016.
Ringel-Scaia, V. M., N. Beitel-White, M. F. Lorenzo, R. M. Brock, K. E. Huie, S. Coutermarsh-Ott, K. Eden, D. K. McDaniel, S. S. Verbridge, J. H. Rossmeisl, K. J. Oestreich, R. V. Davalos, and I. C. Allen. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 44:112–125, 2019.
Rossmeisl, J. H., P. A. Garcia, T. E. Pancotto, J. L. Robertson, N. Henao-Guerrero, R. E. Neal, T. L. Ellis, and R. V. Davalos. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurg. 123:1008–1025, 2015.
Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.
Sapareto, S. A., and W. C. Dewey. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. 10:787–800, 1984.
Scheffer, H. J., A. G. M. Stam, B. Geboers, L. G. P. H. Vroomen, A. Ruarus, B. de Bruijn, M. P. van den Tol, G. Kazemier, M. R. de Meijerink, and T. D. de Gruijl. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 2019. https://doi.org/10.1080/2162402X.2019.1652532.
Shao, Q., F. Liu, C. Chung, K. Elahi-Gedwillo, P. P. Provenzano, B. Forsyth, and J. C. Bischof. Physical and chemical enhancement of and adaptive resistance to irreversible electroporation of pancreatic cancer. Ann. Biomed. Eng. 46:25–36, 2018.
Shao, Q., S. O’Flanagan, T. Lam, P. Roy, F. Pelaez, B. J. Burbach, S. M. Azarin, Y. Shimizu, and J. C. Bischof. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int. J. Hyperth. 36:130–138, 2019.
Stam, A. G. M., and T. D. de Gruijl. From local to systemic treatment: leveraging antitumor immunity following irreversible electroporation. In: Irreversible Electroporation in Clinical Practice, edited by M. R. Meijerink, H. J. Scheffer, and G. Narayanan. Cham: Springer International Publishing, 2018, pp. 249–270.
Thibaudeau, L., A. V. Taubenberger, B. M. Holzapfel, V. M. Quent, T. Fuehrmann, P. Hesami, T. D. Brown, P. D. Dalton, C. A. Power, B. G. Hollier, and D. W. Hutmacher. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis. Model. Mech. 7:299–309, 2014.
Xu, L., and A. Yamamoto. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf. B Biointerfaces 93:67–74, 2012.
Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.
Zhao, J., X. Wen, L. Tian, T. Li, C. Xu, X. Wen, M. P. Melancon, S. Gupta, B. Shen, W. Peng, and C. Li. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat. Commun. 10:899, 2019.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4