Alley, M. D., B. R. Schimizze, and S. F. Son. Experimental modeling of explosive blast-related traumatic brain injuries. Neuroimage 54(Suppl 1):S45–S54, 2011.
Bain, A. C., and D. F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122:615–622, 2000.
Bass, C. R., M. B. Panzer, K. A. Rafaels, G. Wood, J. Shridharani, and B. P. Capeheart. Brain injuries from blast. Ann. Biomed. Eng. 40:185–202, 2012.
Bayly, P. V., E. B. Black, R. C. Pedersen, E. P. Leister, and G. M. Genin. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J. Biomech. 39:1086–1095, 2006.
Beamer, M., S. R. Tummala, D. Gullotti, K. Kopil, S. Gorka, T. Abel, C. R. Bass, B. Morrison, III, A. S. Cohen, and D. F. Meaney. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp. Neurol. 283:16–28, 2016.
Budde, M. D., A. Shah, M. McCrea, W. E. Cullinan, F. A. Pintar, and B. D. Stemper. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front. Neurol. 4:1–12, 2013.
Cater, H. L., L. E. Sundstrom, and B. Morrison, III. Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J. Biomech. 39:2810–2818, 2006.
Chen, Y. C., H. Mao, K. H. Yang, T. Abel, and D. F. Meaney. A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice. Front. Neurol. 5:1–14, 2014.
DVBIC. Department of Defense Numbers for Traumatic Brain Injury. Defense and Veterans Brain Injury Center (DVBIC). Silver Spring: Armed Forces Health Surveillance Center, 2018.
Effgen, G. B., C. D. Hue, E. W. Vogel, III, M. B. Panzer, C. R. Bass, D. F. Meaney, and B. Morrison, III. A multiscale approach to blast neurotrauma modeling: part II: methodology for inducing blast injury to in vitro models. Front. Neurol. 3:1–10, 2012.
Effgen, G. B., and B. Morrison, III. Electrophysiological and pathological characterization of the period of heightened vulnerability to repetitive injury in an in vitro stretch model. J. Neurotrauma 34:914–924, 2016.
Effgen, G. B., T. Ong, S. Nammalwar, A. I. Ortuno, D. F. Meaney, C. R. Bass, and B. Morrison, III. Primary blast exposure increases hippocampal vulnerability to subsequent exposure: reducing long-term potentiation. J. Neurotrauma 33:1901–1912, 2016.
Effgen, G. B., E. W. Vogel, III, K. A. Lynch, A. Lobel, C. D. Hue, D. F. Meaney, C. R. Bass, and B. Morrison, III. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures. J. Neurotrauma 31:1202–1210, 2014.
Elkin, B. S., E. U. Azeloglu, K. D. Costa, and B. Morrison, III. Mechanical heterogeneity of the rat hippocampus measured by AFM indentation. J. Neurotrauma 24:812–822, 2007.
Garimella, H. T., R. H. Kraft, and A. J. Przekwas. Do blast induced skull flexures result in axonal deformation? PLoS ONE 13:e0190881, 2018.
Geddes, D. M., R. S. Cargill, and M. C. LaPlaca. Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J. Neurotrauma 20:1039–1049, 2003.
Goldstein, L. E., A. M. Fisher, C. A. Tagge, X. L. Zhang, L. Velisek, J. A. Sullivan, C. Upreti, J. M. Kracht, M. Ericsson, M. W. Wojnarowicz, C. J. Goletiani, G. M. Maglakelidze, N. Casey, J. A. Moncaster, O. Minaeva, R. D. Moir, C. J. Nowinski, R. A. Stern, R. C. Cantu, J. Geiling, J. K. Blusztajn, B. L. Wolozin, T. Ikezu, T. D. Stein, A. E. Budson, N. W. Kowall, D. Chargin, A. Sharon, S. Saman, G. F. Hall, W. C. Moss, R. O. Cleveland, R. E. Tanzi, P. K. Stanton, and A. C. McKee. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4:134–160, 2012.
Gullotti, D. M., M. Beamer, M. B. Panzer, Y. Chia Chen, T. P. Patel, A. Yu, N. Jaumard, B. Winkelstein, C. R. Bass, B. Morrison, and D. F. Meaney. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury. J. Biomech. Eng. 136:91004, 2014.
Heldt, S. A., A. J. Elberger, Y. Deng, N. H. Guley, N. Del Mar, J. Rogers, G. C. Choi, J. Ferrell, T. S. Rex, M. G. Honig, and A. Reiner. A novel closed-head model of mild traumatic brain injury caused by primary overpressure blast to the cranium produces sustained emotional deficits in mice. Front. Neurol. 5:1–14, 2014.
Hue, C. D., S. Cao, C. R. Bass, D. F. Meaney, and B. Morrison, III. Repeated primary blast injury causes delayed recovery, but not additive disruption, in an in vitro blood–brain barrier model. J. Neurotrauma 31:951–960, 2014.
Hue, C. D., S. Cao, S. F. Haider, K. V. Vo, G. B. Effgen, E. W. Vogel, III, M. B. Panzer, C. R. Bass, D. F. Meaney, and B. Morrison, III. Blood-brain barrier dysfunction after primary blast injury in vitro. J. Neurotrauma 30:1652–1663, 2013.
Kang, W. H., and B. Morrison, III. Functional tolerance to mechanical deformation developed from organotypic hippocampal slice cultures. Biomech. Model. Mechanobiol. 14(3):561–575, 2014.
Kang, W. H., and B. Morrison, III. Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury. Biomech. Model. Mechanobiol. 14(5):1033–1044, 2015.
Kraft, R. H., P. J. Mckee, A. M. Dagro, and S. T. Grafton. Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics. PLoS Comput. Biol. 8:1–15, 2012.
Lamy, M., D. Baumgartner, N. Yoganandan, B. D. Stemper, and R. Willinger. Experimentally validated three-dimensional finite element model of the rat for mild traumatic brain injury. Med. Biol. Eng. Comput. 51:353–365, 2013.
LaPlaca, M. C., D. K. Cullen, J. J. McLoughlin, and R. S. Cargill. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J. Biomech. 38:1093–1105, 2005.
Lusardi, T. A., J. A. Wolf, M. E. Putt, D. H. Smith, and D. F. Meaney. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J. Neurotrauma 21:61–72, 2004.
Mao, H., L. Zhang, K. H. Yang, and A. I. King. Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J. 50:583–600, 2006.
Morrison, III, B., H. L. Cater, C. D. Benham, and L. E. Sundstrom. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Methods 150:192–201, 2006.
Panzer, M. B., K. A. Matthews, A. W. Yu, B. Morrison, III, D. F. Meaney, and C. R. Bass. A multiscale approach to blast neurotrauma modeling: Part I—development of novel test devices for in vivo and in vitro blast injury models. Front. Neurol. 3:46, 2012.
Panzer, M. B., B. S. Myers, and C. R. Bass. Mesh considerations for finite element blast modeling in biomechanics. Comput. Methods Biomech. Biomed. Eng. 16:612–621, 2013.
Panzer, M. B., B. S. Myers, B. P. Capehart, and C. R. Bass. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40:1530–1544, 2012.
Sarnitoranont, M., S. J. Lee, Y. Hong, M. A. King, G. Subhash, J. Kwon, and D. F. Moore. High-strain-rate brain injury model using submerged acute rat brain tissue slice. J. Neurotrauma 29:418–429, 2012.
Singh, D., D. S. Cronin, and T. N. Haladuick. Head and brain response to blast using sagittal and transverse finite element models. Int. J. Numer. Methods Biomed. Eng. 30:470–489, 2014.
Stemper, B. D., A. S. Shah, M. D. Budde, C. M. Olsen, A. Glavaski-Josimovic, S. N. Kurpad, M. McCrea, and F. A. Pintar. Behavioral outcomes differ between rotational acceleration and blast mechanisms of mild traumatic brain injury. Front. Neurol. 7:1–13, 2016.
Takhounts, E., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.
Vandevord, P. J., R. Bolander, V. S. S. S. Sajja, K. Hay, and C. A. Bir. Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure. Ann. Biomed. Eng. 40:227–236, 2012.
Vogel, III, E. W., G. B. Effgen, T. P. Patel, D. F. Meaney, C. R. Bass, and B. Morrison, III. Isolated primary blast inhibits long-term potentiation in organotypic hippocampal slice cultures. J. Neurotrauma 33:652–661, 2016.
Vogel, III, E. W., S. H. Rwema, D. F. Meaney, C. R. Bass, and B. Morrison, III. Primary blast injury depressed hippocampal long-term potentiation through disruption of synaptic proteins. J. Neurotrauma 34(5):1063–1073, 2016.
Wright, R. M., A. Post, B. Hoshizaki, and K. T. Ramesh. A multiscale computational approach to estimating axonal damage under inertial loading of the head. J. Neurotrauma 30:102–118, 2013.
Yu, Z., and B. Morrison, III. Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus. J. Neurophysiol. 103:499–510, 2010.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4