A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-019-02429-4 below:

The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials: The Future of Quantifying Bio-molecular Interactions—A Review

References
  1. Aguado, B. A., J. R. Caffe, D. Nanavati, S. S. Rao, G. G. Bushnell, S. M. Azarin, and L. D. Shea. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomater. 33:13–24, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen, T. M., and P. R. Cullis. Drug delivery systems: entering the mainstream. Science 303:1818–1822, 2004.

    CAS  PubMed  Google Scholar 

  3. Anderson, J., and A. Papachristodoulou. On validation and invalidation of biological models. BMC Bioinform. 10:132, 2009.

    Google Scholar 

  4. Ansari, A., and P. I. Imoukhuede. Plenty more room on the glass bottom: surface functionalization and nanobiotechnology for cell isolation. Nano Res. 11:5107–5129, 2018.

    Google Scholar 

  5. Ansari, A., F. T. Lee-Montiel, J. Amos, and P. I. Imoukhuede. Secondary anchor targeted cell release. Biotechnol. Bioeng. 112:2214–2227, 2015.

    CAS  PubMed  Google Scholar 

  6. Ansari, A., R. Patel, K. Schultheis, V. Naumovski, and P. I. Imoukhuede. A method of targeted cell isolation via glass surface functionalization. J. Vis. Exp. 115:e54315, 2016.

    Google Scholar 

  7. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, and J. M. Isner. Isolation of putative progenitor endothelial cells for angiogenesis. Science 80(275):964–966, 1997.

    Google Scholar 

  8. Beseničar, M., P. Maček, J. H. Lakey, and G. Anderluh. Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 141:169–178, 2006.

    PubMed  Google Scholar 

  9. Bose, A. K., and K. A. Janes. A high-throughput assay for phosphoprotein-specific phosphatase activity in cellular extracts. Mol. Cell. Proteom. 12:797–806, 2013.

    CAS  Google Scholar 

  10. Bray, D. Advances in Systems Biology, Vol. 736. Berlin: Springer, pp. 193–198, 2012.

    Google Scholar 

  11. Breitling, R. What is systems biology? Front. Physiol. 1:9, 2010.

    PubMed  PubMed Central  Google Scholar 

  12. Burrage, K., L. Hood, and M. A. Ragan. Advanced computing for systems biology. Brief. Bioinform. 7:390–398, 2006.

    CAS  PubMed  Google Scholar 

  13. Cartwright, J. H. E., O. Piro, and I. Tuval. Fluid dynamics in developmental biology: moving fluids that shape ontogeny. HFSP J. 3:77–93, 2009.

    PubMed  Google Scholar 

  14. Chandler, K. B., D. R. Leon, R. D. Meyer, N. Rahimi, and C. E. Costello. Site-specific N-glycosylation of endothelial cell receptor tyrosine kinase VEGFR-2. J. Proteom. Res. 16:677–688, 2017.

    CAS  Google Scholar 

  15. Chen, S., A. Ansari, W. Sterrett, K. Hurley, J. Kemball, J. C. Weddell, P. I. Imoukhuede, K. Kemball, J. C. Weddell, and P. I. Imoukhuede. Current state-of-the-art and future directions in systems biology. Prog. Commun. Sci. 1:12–26, 2014.

    Google Scholar 

  16. Chen, S., X. Guo, O. Imarenezor, and P. I. Imoukhuede. Quantification of VEGFRs, NRP1, and PDGFRs on endothelial cells and fibroblasts reveals serum, intra-family ligand, and cross-family ligand regulation. Cell. Mol. Bioeng. 8:383–403, 2015.

    CAS  Google Scholar 

  17. Chen, K., H. Obinata, and T. Izumi. Detection of G protein-coupled receptor-mediated cellular response involved in cytoskeletal rearrangement using surface plasmon resonance. Biosens. Bioelectron. 25:1675–1680, 2010.

    CAS  PubMed  Google Scholar 

  18. Chen, S., J. Weddell, P. Gupta, G. Conard, J. Parkin, and P. I. Imoukhuede. qFlow cytometry-based receptoromic screening: a high-throughput quantification approach informing biomarker selection and nanosensor development. In: Biomedical Nanotechnology: Methods and Protocols, edited by S. H. Petrosko, and E. S. Day. New York: Springer, 2017, pp. 117–138. https://doi.org/10.1007/978-1-4939-6840-4_8.

    Chapter  Google Scholar 

  19. Chu, L.-H., V. C. Ganta, M. H. Choi, G. Chen, S. D. Finley, B. H. Annex, and A. S. Popel. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Sci. Rep. 6:37030, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D’Souza, S. F. Immobilization and stabilization of biomaterials for biosensor applications. Appl. Biochem. Biotechnol. 96:225–238, 2001.

    PubMed  Google Scholar 

  21. Drake, A. W., D. G. Myszka, and S. L. Klakamp. Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods. Anal. Biochem. 328:35–43, 2004.

    CAS  PubMed  Google Scholar 

  22. Drake, A. W., M. L. Tang, G. A. Papalia, G. Landes, M. Haak-Frendscho, and S. L. Klakamp. Biacore surface matrix effects on the binding kinetics and affinity of an antigen/antibody complex. Anal. Biochem. 429:58–69, 2012.

    CAS  PubMed  Google Scholar 

  23. Du, X., Y. Li, Y.-L. Xia, S.-M. Ai, J. Liang, P. Sang, X.-L. Ji, and S.-Q. Liu. Insights into protein–ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci. 17:144, 2016.

    PubMed Central  Google Scholar 

  24. Eniola, A. O., and D. A. Hammer. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: effect of degradation on targeting activity. Biomaterials 26:661–670, 2005.

    CAS  PubMed  Google Scholar 

  25. Evaluation, D. Protocol for measuring small molecule interactions using Biacore: a practical guide. Symp. A Q. J. Mod. Foreign Lit. 5:1–16, 2002.

    Google Scholar 

  26. Favicchio, R., A. I. Dragan, G. G. Kneale, and C. M. Read. Fluorescence spectroscopy and anisotropy in the analysis of DNA–protein interactions. Methods in Molecular Biology, Totwa: Humana Press, 2009, pp. 589–611.

    Google Scholar 

  27. Filion, R. J., and A. S. Popel. A reaction-diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed. Eng. 32:645–663, 2004.

    PubMed  Google Scholar 

  28. Finley, S. D., L.-H. Chu, and A. S. Popel. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov Today 20:187–197, 2014.

    PubMed  PubMed Central  Google Scholar 

  29. Finley, S. D., M. O. Engel-Stefanini, P. I. Imoukhuede, A. S. Popel, A. O. Dokun, B. H. Annex, A. S. Popel, S. D. Finley, M. O. Engel-Stefanini, P. I. Imoukhuede, and A. S. Popel. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. Am. J. Physiol. Heart Circ. Physiol. 5:193, 2011.

    CAS  Google Scholar 

  30. Finley, S. D., and A. S. Popel. Predicting the effects of anti-angiogenic agents targeting specific VEGF isoforms. AAPS J. 14:500–509, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Finley, S. D., and A. S. Popel. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. J. Natl. Cancer Inst. 105:802–811, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fischer, M. J. E. Surface plasmon. Resonance. 627:55–73, 2010.

    CAS  Google Scholar 

  33. Fivash, M., E. M. Towler, and R. J. Fisher. BIAcore for macromolecular interaction. Curr. Opin. Biotechnol. 9:97–101, 1998.

    CAS  PubMed  Google Scholar 

  34. Fullstone, G., J. Wood, M. Holcombe, and G. Battaglia. Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci. Rep. 5:10649, 2015.

    PubMed  PubMed Central  Google Scholar 

  35. Goh, W. L., M. Yen Lee, T. L. Joseph, S. Tng Quah, C. J. Brown, C. Verma, S. Brenner, F. J. Ghadessy, and Y. Nah Teo. Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions. J. Am. Chem. Soc. 2014. https://doi.org/10.1021/ja413031h.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goubko, C. A., and X. Cao. Patterning multiple cell types in co-cultures: a review. Mater. Sci. Eng. C 29:1855–1868, 2009.

    CAS  Google Scholar 

  37. Hanson, M. A., V. Cherezov, M. T. Griffith, C. B. Roth, V. P. Jaakola, E. Y. T. Chien, J. Velasquez, P. Kuhn, and R. C. Stevens. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haseley, S. R., P. Talaga, J. P. Kamerling, and J. F. G. Vliegenthart. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance. Anal. Biochem. 274:203–210, 1999.

    CAS  PubMed  Google Scholar 

  39. Hassan, U., T. Ghonge, B. Reddy, M. Patel, M. Rappleye, I. Taneja, A. Tanna, R. Healey, N. Manusry, Z. Price, T. Jensen, J. Berger, A. Hasnain, E. Flaugher, S. Liu, B. Davis, J. Kumar, K. White, and R. Bashir. A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 8:15949, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. He, D., X. He, K. Wang, X. Yang, X. Yang, X. Li, and Z. Zou. Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem. Commun. Chem. Commun 50:11049–11052, 2014.

    CAS  Google Scholar 

  41. GE Healthcare. Biacore Sensor Surface Handbook. 8–10, 2008. http://www.gelifesciences.com/gehcls_images/GELS/Related Content/Files/1363789281999/litdoc14100571_20130430000159.pdf.

  42. Healthcare, G. E., and L. Sciences. Biacore 3000, pp. 29–30.

  43. Hide, M., T. Tsutsui, H. Sato, T. Nishimura, K. Morimoto, S. Yamamoto, and K. Yoshizato. Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal. Biochem. 302:28–37, 2002.

    CAS  PubMed  Google Scholar 

  44. Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377:528–539, 2003.

    CAS  PubMed  Google Scholar 

  45. Horn, F., and R. Jackson. General mass action kinetics. Arch. Ration. Mech. Anal. 47:81–116, 1972.

    Google Scholar 

  46. HunLee, S., H. JinKo, and T. HyunPark. Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens. Bioelectron. 25:55–60, 2009.

    Google Scholar 

  47. Hyun, K.-A. A., and H.-I. Jung. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34:1028–1041, 2013.

    CAS  PubMed  Google Scholar 

  48. Imoukhuede, P. I., A. O. Dokun, B. H. Annex, and A. S. Popel. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Hear. Circ Physiol 304:H1085–H1093, 2013.

    CAS  Google Scholar 

  49. Imoukhuede, P. I., and A. S. A. S. Popel. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 317:955–965, 2011.

    CAS  PubMed  Google Scholar 

  50. Imoukhuede, P. I., and A. S. Popel. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS ONE 7:e44791, 2012.

    PubMed  PubMed Central  Google Scholar 

  51. Imoukhuede, P. I., and A. S. Popel. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 3:225–244, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jing, M., and M. T. Bowser. Methods for measuring aptamer-protein equilibria: a review. Anal. Chim. Acta 686:9–18, 2011.

    CAS  PubMed  Google Scholar 

  53. Joss, L., T. A. Morton, M. L. Doyle, and D. G. Myszka. Interpreting kinetic rate constants from optical biosensor data recorded on a decaying surface. Anal. Biochem. 261:203–210, 1998.

    CAS  PubMed  Google Scholar 

  54. Karimi, A., S. Yazdi, and A. M. Ardekani. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7:21501, 2013.

    CAS  PubMed  Google Scholar 

  55. Karlsson, R. Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. J. Mol. Recognit. 12:285–292, 1999.

    CAS  PubMed  Google Scholar 

  56. Kenakin, T. Quantifying biological activity in chemical terms: a pharmacology primer to describe drug effect. ACS Chem. Biol. 4:249–260, 2009.

    CAS  PubMed  Google Scholar 

  57. Khademhosseini, A., K. Y. Suh, J. M. Yang, G. Eng, J. Yeh, S. Levenberg, and R. Langer. Layer-by-layer deposition of hyaluronic acid and poly-l-lysine for patterned cell co-cultures. Biomaterials 25:3583–3592, 2004.

    CAS  PubMed  Google Scholar 

  58. Klein, U., G. Gimpl, and F. Fahrenholz. Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34:13784–13793, 1995.

    CAS  PubMed  Google Scholar 

  59. Kosaihira, A., and T. Ona. Rapid and quantitative method for evaluating the personal therapeutic potential of cancer drugs. Anal. Bioanal. Chem. 391:1889–1897, 2008.

    CAS  PubMed  Google Scholar 

  60. Li, E., and K. Hristova. Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adhes. Migr. 4:249–254, 2010.

    Google Scholar 

  61. Lin, X., K. Takahashi, Y. Liu, A. Derrien, and P. O. Zamora. A synthetic, bioactive PDGF mimetic with binding to both alpha-PDGF and beta-PDGF receptors. Growth Factors 25:87–93, 2007.

    CAS  PubMed  Google Scholar 

  62. Lungwitz, U., M. Breunig, T. Blunk, and A. Göpferich. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60:247–266, 2005.

    CAS  PubMed  Google Scholar 

  63. Luo, Z. Y., F. Xu, T. J. Lu, and B. F. Bai. Direct numerical simulation of detachment of single captured leukocyte under different flow conditions. J. Mech. Med. Biol. 11:273–284, 2011.

    Google Scholar 

  64. Mac Gabhann, F., J. W. Ji, and A. S. Popel. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J. Appl. Physiol. 102:722–734, 2007.

    CAS  PubMed  Google Scholar 

  65. Mac Gabhann, F., and A. S. Popel. Systems biology of vascular endothelial growth factors. Microcirculation 15:715–738, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mac Gabhann, F., A. Qutub, B. H. Annex, and A. S. Popel. Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:694–707, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahato, R. I., A. Rolland, and E. Tomlinson. Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm. Res. 14:853–859, 1997.

    CAS  PubMed  Google Scholar 

  68. Maltais, J.-S., J.-B. Denault, L. Gendron, and M. Grandbois. Label-free monitoring of apoptosis by surface plasmon resonance detection of morphological changes. Apoptosis 17:916–925, 2012.

    PubMed  Google Scholar 

  69. Mamer, S. B., S. Chen, J. C. Weddell, A. Palasz, A. Wittenkeller, M. Kumar, and P. I. Imoukhuede. Discovery of high-affinity PDGF-VEGFR interactions: redefining RTK dynamics. Sci. Rep. 7:16439, 2017.

    PubMed  PubMed Central  Google Scholar 

  70. March, S., E. E. Hui, G. H. Underhill, S. Khetani, and S. N. Bhatia. Microenvironmental regulation of the sinusoidal endothelial cell phenotype in vitro. Hepatology 50:920–928, 2009.

    CAS  PubMed  Google Scholar 

  71. Matlock, M. K., A. S. Holehouse, and K. M. Naegle. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins. Nucleic Acids Res. 43:521–530, 2015.

    Google Scholar 

  72. Mauriz, E., S. Carbajo-Pescador, R. Ordoñez, M. C. García-Fernández, J. L. Mauriz, L. M. Lechuga, and J. González-Gallego. On-line surface plasmon resonance biosensing of vascular endothelial growth factor signaling in intact-human hepatoma cell lines. Analyst 139:1426, 2014.

    CAS  PubMed  Google Scholar 

  73. Mazia, D., G. Schatten, and W. Sale. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J. Cell Biol. 66:198–200, 1975.

    CAS  PubMed  Google Scholar 

  74. Mooradian, A. D., J. M. Held, and K. M. Naegle. Using ProteomeScout: a resource of post-translational modifications, their experiments, and the proteins that they annotate. Current Protocols in Bioinformatics, Hoboken: Wiley, 2017, pp. 13.32.1–13.32.27. https://doi.org/10.1002/cpbi.31.

    Chapter  Google Scholar 

  75. Müller, M., J. E. Weigand, O. Weichenrieder, and B. Suess. Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res. 34:2607–2617, 2006.

    PubMed  PubMed Central  Google Scholar 

  76. Murphy, M. Using SPR to analyze cell-binding interactions. Genet. Eng. Biotechnol. News 37:18–19, 2017.

    Google Scholar 

  77. Murphy, M., L. Jason-Moller, and J. Bruno. Using Biacore to measure the binding kinetics of an antibody-antigen interaction. Curr. Protoc. Protein Sci. 45:19–24, 2006.

    Google Scholar 

  78. Myszka, D. G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol. 8:50–57, 1997.

    CAS  PubMed  Google Scholar 

  79. Myszka, D. G. Improving biosensor analysis. J. Mol. Recognit. 12:279–284, 1999.

    CAS  PubMed  Google Scholar 

  80. Myszka, D. G. Kinetic, Equilibrium, and Thermodynamic Analysis of Macromolecular Interactions with BIACORE. Cambridge: Academic Press, 2000.

    Google Scholar 

  81. Nguyen, B., F. A. Tanious, and W. D. Wilson. Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions. Methods 42:150–161, 2007.

    CAS  PubMed  Google Scholar 

  82. Nucleic, L. Biochemical applications kinetics. Reactions 2:366–372, 1975.

    Google Scholar 

  83. Ogura, T., Y. Tanaka, and H. Toyoda. Whole cell-based surface plasmon resonance measurement to assess binding of anti-TNF agents to transmembrane target. Anal. Biochem. 508:73–77, 2016.

    CAS  PubMed  Google Scholar 

  84. Onyskiw, P. J., and O. Eniola-Adefeso. Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow. Langmuir 29:11127–11134, 2013.

    CAS  PubMed  Google Scholar 

  85. Papaioannou, T. G., and C. Stefanadis. Vascular wall shear stress: basic principles and methods. Hell. J Cardiol 46:9–15, 2005.

    Google Scholar 

  86. Park, C. S., I. C. Schneider, and J. M. Haugh. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J. Biol. Chem. 278:37064–37072, 2003.

    CAS  PubMed  Google Scholar 

  87. Patching, S. G. Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta 43–55:2014, 1838.

    Google Scholar 

  88. Patel, V. J., K. Thalassinos, S. E. Slade, J. B. Connolly, A. Crombie, J. C. Murrell, and J. H. Scrivens. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J. Proteom. Res. 8:3752–3759, 2009.

    CAS  Google Scholar 

  89. Patil, S. D., D. G. Rhodes, and D. J. Burgess. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7:E61–E77, 2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pedron, S., and B. A. C. Harley. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomed. Mater. Res. A 101:3404–3415, 2013.

    CAS  PubMed  Google Scholar 

  91. Quinn, J. G., S. O’Neill, A. Doyle, C. McAtamney, D. Diamond, B. D. MacCraith, and R. O’Kennedy. Development and application of surface plasmon resonance-based biosensors for the detection of cell–ligand interactions. Anal. Biochem. 281:135–143, 2000.

    CAS  PubMed  Google Scholar 

  92. Qutub, A., F. Gabhann, E. Karagiannis, P. Vempati, and A. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28(2):14–31, 2009.

    PubMed  PubMed Central  Google Scholar 

  93. Qutub, A. A., and A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3:13, 2009.

    PubMed  PubMed Central  Google Scholar 

  94. Rainaldi, G., A. Calcabrini, and M. T. Santini. Positively charged polymer polylysine-induced cell adhesion molecule redistribution in K562 cells. J. Mater. Sci. Mater. Med. 9:755–760, 1998.

    CAS  PubMed  Google Scholar 

  95. Reichert SPR Endothelial Cell Attachment to Matrix Proteins and Hypersmolar Response Quantified using Surface Plasmon Resonance (SPR) - Reichert Technologies | Life Sciences, Surface Plasmon Resonance, Single Channel, Dual Channel and Modular System Platf.

  96. Renaud, J. P., C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15:679–698, 2016.

    CAS  PubMed  Google Scholar 

  97. Roden, L. D., and D. G. Myszka. Global analysis of a macromolecular interaction measured on BIAcore. Biochem. Biophys. Res. Commun. 225:1073–1077, 1996.

    CAS  PubMed  Google Scholar 

  98. Rouck, J. E., J. E. Krapf, J. Roy, H. C. Huff, and A. Das. Recent advances in nanodisc technology for membrane protein studies (2012–2017). FEBS Lett. 591:2057–2088, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Salamon, Z., and G. Tollin. Surface Plasmon Resonance, Theory, Vol. 3. New York: Elsevier, pp. 2311–2319, 1999.

    Google Scholar 

  100. Sarabipour, S., K. Ballmer-Hofer, and K. Hristova. VEGFR-2 conformational switch in response to ligand binding. Elife 5:1–23, 2016.

    Google Scholar 

  101. Schuck, P., and H. Zhao. The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol. Biol. 627:15–54, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schuler, M. A., I. G. Denisov, and S. G. Sligar. Nanodiscs as a new tool to examine lipid-protein interactions. In: Methods in Molecular Biology, edited by J. H. Kleinschmidt. Totowa: Humana Press, 2013, pp. 415–433.

    Google Scholar 

  103. Shintani, Y., S. Takashima, Y. Asano, H. Kato, Y. Liao, S. Yamazaki, O. Tsukamoto, O. Seguchi, H. Yamamoto, T. Fukushima, K. Sugahara, M. Kitakaze, and M. Hori. Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. EMBO J. 25:3045–3055, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. simulations of rest and exercise. Ji, J. W., F. Mac Gabhann, and A. S. Popel. Skeletal muscle VEGF gradients in peripheral arterial disease. Am. J. Physiol. Heart Circ. Physiol. 293:H3740–H3749, 2007.

    Google Scholar 

  105. Uchida, H., K. Fujitani, Y. Kawai, H. Kitazawa, A. Horii, K. Shiiba, K. Saito, and T. Saito. A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin. Biosci. Biotechnol. Biochem. 68:1004–1010, 2004.

    CAS  PubMed  Google Scholar 

  106. Van Der Merwe, P. A., N. J. De Mol, and M. J. E. Fischer. Surface plasmon resonance. Methods Mol. Biol. 627:1–14, 2010.

    Google Scholar 

  107. Velazquez-Campoy, A., and E. Freire. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 1:186–191, 2006.

    CAS  PubMed  Google Scholar 

  108. Vempati, P., F. MacGabhann, and P. Vempati. Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS ONE 5:e11860, 2010.

    PubMed  PubMed Central  Google Scholar 

  109. von Tiedemann, B., and U. Bilitewski. Characterization of the vascular endothelial growth factor-receptor interaction and determination of the recombinant protein by an optical receptor sensor. Biosens. Bioelectron. 17:983–991, 2002.

    Google Scholar 

  110. Wan, Y., Y. T. Kim, N. Li, S. K. Cho, R. Bachoo, A. D. Ellington, and S. M. Iqbal. Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res. 70:9371–9380, 2010.

    CAS  PubMed  Google Scholar 

  111. Wang, Y., S. Zhang, T. Xu, T. Zhang, Y. Mo, J. Liu, L. Yan, and F. Xing. Ultra-sensitive and ultra-fast detection of whole unlabeled living cancer cell responses to paclitaxel with a graphene-based biosensor. Sens. Actuators B Chem. 263:417–425, 2018.

    CAS  Google Scholar 

  112. Weddell, J. C. Predicting angiogenic receptor trafficking and signaling via computational systems biology. 2016. http://hdl.handle.net/2142/95356%0A.

  113. Weddell, J. C., S. Chen, and P. I. Imoukhuede. VEGFR1 promotes cell migration and proliferation through PLCγ and PI3K pathways. NPJ Syst. Biol. Appl. 4:1, 2018.

    PubMed  Google Scholar 

  114. Weddell, J. C., and P. I. Imoukhuede. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS ONE 9:e97271, 2014.

    PubMed  PubMed Central  Google Scholar 

  115. Weddell, J. C., and P. I. Imoukhuede. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr. Biol. 2017. https://doi.org/10.1039/C7IB00011A.

    Article  Google Scholar 

  116. Wiley, H. S., S. Y. Shvartsman, D. A. Lauffenburger, H. Steven Wiley, S. Y. Shvartsman, and D. A. Lauffenburger. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13:43–50, 2003.

    CAS  PubMed  Google Scholar 

  117. Witelski, T., and M. Bowen. Methods of Mathematical Modelling: Continuous Systems and Differential Equations. Basel: Springer, pp. 1–305, 2015. https://doi.org/10.1007/978-3-319-23042-9.

    Book  Google Scholar 

  118. Wu, F. T. H., M. O. Stefanini, F. Mac Gabhann, and A. S. Popel. Modeling of growth factor-receptor systems: from molecular-level protein interaction networks to whole-body compartment Models. Methods Enzymol. 467:461–497, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yanase, Y., H. Suzuki, T. Tsutsui, T. Hiragun, Y. Kameyoshi, and M. Hide. The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens. Bioelectron. 22:1081–1086, 2007.

    CAS  PubMed  Google Scholar 

  120. Yashunsky, V., S. Shimron, V. Lirtsman, A. M. Weiss, N. Melamed-Book, M. Golosovsky, D. Davidov, and B. Aroeti. Real-time monitoring of transferrin-induced endocytic vesicle formation by mid-infrared surface plasmon resonance. Biophys. J . 97:1003–1012, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu, J., T. Nguyen, R. Pei, M. Stojanovic, and Q. Lin. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 12:3504–3513, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ziblat, R., V. Lirtsman, D. Davidov, and B. Aroeti. Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells. Biophys. J . 90:2592–2599, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4