Afifi, A. M., H. Yamane, and Y. Kimura. Effect of polymer molecular weight on the electrospinning of polylactides in entangled and aligned fiber forms. Sen-I Gakkaishi 66(2):35–42, 2010.
Aghajanpoor, M., S. Hashemi-Najafabadi, M. Baghaban-Eslaminejad, F. Bagheri, S. Mohammad Mousavi, and F. Azam Sayyahpour. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J. Biomed. Mater. Res. A 105(7):1887–1899, 2017.
Arras, M. M., C. Grasl, H. Bergmeister, and H. Schima. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci. Technol. Adv. Mater. 13(3):035008, 2012.
Atkins, K. M., D. Lopez, D. K. Knight, K. Mequanint, and E. R. Gillies. A Versatile approach for the syntheses of poly(ester amide)s with Pendant functional groups. J. Polym. Sci. Part A 47(15):3757–3772, 2009.
Awad, N. K., H. Niu, U. Ali, S. Morsi, and T. Lin. Electrospun fibrous scaffolds for small-diameter blood vessels: a review. Membranes (Basel) 8(1):15, 2018.
Badrossamay, M. R., K. Balachandran, A. K. Capulli, H. M. Golecki, A. Agarwal, J. A. Goss, H. Kim, K. Shin, and K. K. Parker. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 35(10):3188–3197, 2014.
Bajpai, V. K., and S. T. Andreadis. Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng. Part B 18(5):405–425, 2012.
Basu, A., K. R. Kunduru, J. Katzhendler, and A. J. Domb. Poly(alpha-hydroxy acid)s and poly(alpha-hydroxy acid-co-alpha-amino acid)s derived from amino acid. Adv. Drug Deliv. Rev. 107:82–96, 2016.
Dahan, N., U. Sarig, T. Bronshtein, L. Baruch, T. Karram, A. Hoffman, and M. Machluf. Dynamic autologous reendothelialization of Small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng. Part A 23(1–2):69–79, 2017.
Dahan, N., G. Zarbiv, U. Sarig, T. Karram, A. Hoffman, and M. Machluf. Porcine small diameter arterial extracellular matrix supports endothelium formation and media remodeling forming a promising vascular engineered biograft. Tissue Eng. Part A 18(3–4):411–422, 2012.
Eoh, J. H., N. Shen, J. A. Burke, S. Hinderer, Z. Xia, K. Schenke-Layland, and S. Gerecht. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater. 52:49–59, 2017.
Grenier, S., M. Sandig, D. W. Holdsworth, and K. Mequanint. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds. J. Biomed. Mater. Res. A 89(2):293–303, 2009.
Grenier, S., M. Sandig, and K. Mequanint. Smooth muscle alpha-actin and calponin expression and extracellular matrix production of human coronary artery smooth muscle cells in 3D scaffolds. Tissue Eng. Part A 15(10):3001–3011, 2009.
Hao, Y. J., M. Y. Chen, J. B. Zhao, Z. Y. Zhang, and W. T. Yang. Synthesis and properties of polyesteramides having short nylon-610 segments in the main chains through polycondensation and chain extension. Ind. Eng. Chem. Res. 52(19):6410–6421, 2013.
Hirschi, K. K., S. A. Rohovsky, and P. A. D’Amore. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141(3):805–814, 1998.
Huang, H., T. J. Song, X. Li, L. Hu, Q. He, M. Liu, M. D. Lane, and Q. Q. Tang. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U. S. A. 106(31):12670–12675, 2009.
Kim, J. I., T. I. Hwang, L. E. Aguilar, C. H. Park, and C. S. Kim. A controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci. Rep. 6:23761, 2016.
Knight, D. K., E. R. Gillies, and K. Mequanint. Strategies in functional poly(ester amide) syntheses to study human coronary artery smooth muscle cell interactions. Biomacromolecules 12(7):2475–2487, 2011.
Knight, D. K., E. R. Gillies, and K. Mequanint. Biomimetic l-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering. Acta Biomater. 10(8):3484–3496, 2014.
Krawiec, J. T., and D. A. Vorp. Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33(12):3388–3400, 2012.
Lin, S., and K. Mequanint. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues. Acta Biomater. 59:200–209, 2017.
Lin, L., Q. Qiu, N. Zhou, W. Dong, J. Shen, W. Jiang, J. Fang, J. Hao, and Z. Hu. Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep. 49(3):179–184, 2016.
Lin, S., M. Sandig, and K. Mequanint. Three-dimensional topography of synthetic scaffolds induces elastin synthesis by human coronary artery smooth muscle cells. Tissue Eng. Part A 17(11–12):1561–1571, 2011.
Medeiros, E. S., L. H. C. Mattoso, E. N. Ito, K. S. Gregorski, G. H. Robertson, R. D. Offeman, D. F. Wood, W. J. Orts, and S. H. Imam. Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J. Biobased Mater. Bioenergy 2(3):231–242, 2008.
Motamedi, A. S., H. Mirzadeh, F. Hajiesmaeilbaigi, S. Bagheri-Khoulenjani, and M. Shokrgozar. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog. Biomater. 6(3):113–123, 2017.
Oida, T., and H. L. Weiner. Depletion of TGF-beta from fetal bovine serum. J. Immunol. Methods 362(1–2):195–198, 2010.
Patel, A., B. Fine, M. Sandig, and K. Mequanint. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc. Res. 71(1):40–49, 2006.
Said, S. S., C. O’Neil, H. Yin, Z. Nong, J. G. Pickering, and K. Mequanint. Concurrent and sustained delivery of FGF2 and FGF9 from electrospun poly(ester amide) fibrous mats for therapeutic angiogenesis. Tissue Eng. Part A 22(7–8):584–596, 2016.
Said, S. S., J. G. Pickering, and K. Mequanint. Controlled delivery of fibroblast growth factor-9 from biodegradable poly(ester amide) fibers for building functional neovasculature. Pharm. Res. 31(12):3335–3347, 2014.
Sensini, A., C. Gualandi, L. Cristofolini, G. Tozzi, M. Dicarlo, G. Teti, M. Mattioli-Belmonte, and M. Letizia Focarete. Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication 9(1):015025, 2017.
Sensini, A., C. Gualandi, A. Zucchelli, L. A. Boyle, A. P. Kao, C. Reilly, G. Tozzi, L. Cristofolini, and M. L. Focarete. Tendon fascicle-inspired nanofibrous scaffold of polylactic acid/collagen with enhanced 3D-structure and biomechanical properties. Sci. Rep. 8(1):17167, 2018.
Soffer, L., X. Wang, X. Zhang, J. Kluge, L. Dorfmann, D. L. Kaplan, and G. Leisk. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J. Biomater. Sci. Polym. Ed. 19(5):653–664, 2008.
Song, H. G., R. T. Rumma, C. K. Ozaki, E. R. Edelman, and C. S. Chen. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22(3):340–354, 2018.
Srinath, D., S. Lin, D. K. Knight, A. S. Rizkalla, and K. Mequanint. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. J. Tissue Eng. Regen. Med. 8(7):578–588, 2014.
Suga, K., M. Saitoh, S. Fukushima, K. Takahashi, H. Nara, S. Yasuda, and K. Miyata. Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J. Interferon Cytokine Res. 21(9):695–707, 2001.
Sung, H. J., C. Meredith, C. Johnson, and Z. S. Galis. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26):5735–5742, 2004.
Tang, Q. Q., T. C. Otto, and M. D. Lane. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U. S. A. 101(26):9607–9611, 2004.
Theron, J. P., J. H. Knoetze, R. D. Sanderson, R. Hunter, K. Mequanint, T. Franz, P. Zilla, and D. Bezuidenhout. Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater. 6(7):2434–2447, 2010.
Thottappillil, N., and P. D. Nair. Scaffolds in vascular regeneration: current status. Vasc. Health Risk Manag. 11:79–91, 2015.
Upson, S. J., T. O’Haire, S. J. Russell, K. Dalgarno, and A. M. Ferreira. Centrifugally spun PHBV micro and nanofibres. Mater. Sci. Eng C 76:190–195, 2017.
Wang, Y., H. Shi, J. Qiao, Y. Tian, M. Wu, W. Zhang, Y. Lin, Z. Niu, and Y. Huang. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. ACS Appl. Mater. Interfaces. 6(4):2958–2962, 2014.
Wang, M., Y. Su, H. Sun, T. Wang, G. Yan, X. Ran, F. Wang, T. Cheng, and Z. Zou. Induced endothelial differentiation of cells from a murine embryonic mesenchymal cell line C3H/10T1/2 by angiogenic factors in vitro. Differentiation 79(1):21–30, 2010.
Wang, K., M. Zhu, T. Li, W. Zheng, L. Li, M. Xu, Q. Zhao, D. Kong, and L. Wang. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts. J. Biomed. Nanotechnol. 10(8):1588–1598, 2014.
Winnacker, M., and B. Rieger. Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym. Chem. 7(46):7039–7046, 2016.
Wu, J., and Y. Hong. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact. Mater. 1(1):56–64, 2016.
Xie, C., R. P. Ritchie, H. Huang, J. Zhang, and Y. E. Chen. Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler. Thromb. Vasc. Biol. 31(7):1485–1494, 2011.
Yanagisawa, H., and E. C. Davis. Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int. J. Biochem. Cell Biol. 42(7):1084–1093, 2010.
Yu, J., A. R. Lee, W. H. Lin, C. W. Lin, Y. K. Wu, and W. B. Tsai. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng. Part A 20(13–14):1896–1907, 2014.
Zhao, L., G. Li, K. M. Chan, Y. Wang, and P. F. Tang. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2. Calcif. Tissue Int. 84(1):56–64, 2009.
Zhao, J. H., H. Y. Liu, and L. Xu. Preparation and formation mechanism of highly aligned electrospun nanofibers using a modified parallel electrode method. Mater. Des. 90:1–6, 2016.
Zhu, Y., Y. Cao, J. Pan, and Y. Liu. Macro-alignment of electrospun fibers for vascular tissue engineering. J. Biomed. Mater. Res. B 92(2):508–516, 2010.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4