Allen, J. W., and S. N. Bhatia. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol. Bioeng. 82:253–262, 2003.
Annamalai, R. T., D. R. Armant, and H. W. T. Matthew. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS ONE 9:e84287, 2014.
Auger, F. A., L. Gibot, and D. Lacroix. The pivotal role of vascularization in tissue engineering. Annu. Rev. Biomed. Eng. 15:177–200, 2013.
Avgoustiniatos, E. S., and C. K. Colton. Design considerations in immunoisolation. In: Principles of Tissue Engineering, edited by R. P. Lanza, R. S. Langer, W. L. Chick, and R. G. Landes. Austin, TX: Academic Press, 1997, pp. 333–346.
Avgoustiniatos, E. S., and C. K. Colton. Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue. Ann. N. Y. Acad. Sci. 831:145–167, 1997.
Bancroft, G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 99:12600–12605, 2002.
Barakat, A. I., and D. K. Lieu. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem. Biophys. 38:323–343, 2003.
Bhatia, S. N., G. H. Underhill, K. S. Zaret, and I. J. Fox. Cell and tissue engineering for liver disease. Sci. Transl. Med. 6:245sr242, 2014.
Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.
Chiu, J. J., S. Usami, and S. Chien. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41:19–28, 2009.
Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. 6:16–26, 2009.
Dolan, J., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39:1620–1631, 2011.
Dolan, J. M., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39:1620–1631, 2011.
Dvir, T., O. Levy, M. Shachar, Y. Granot, and S. Cohen. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng. 13:2185–2193, 2007.
Esch, M. B., H. Ueno, D. R. Applegate, and M. L. Shuler. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab. Chip 16:2719–2729, 2016.
Fogler, S. Elements of Chemical Reaction Engineering (4th ed.). Upper Saddle River: Prentice Hall, pp. 814–832, 2005.
Geankoplis, C. J. Transport processes and separation process principles: (includes unit operations). Upper Saddle River, NJ: Prentice Hall Professional Technical Reference, pp. 121–136, 2003.
Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11:622–630, 2017.
Kim, L., Y. C. Toh, J. Voldman, and H. Yu. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab. Chip 7:681–694, 2007.
Lee, W., C. Y. Bae, S. Kwon, J. Son, J. Kim, Y. Jeong, S. S. Yoo, and J. K. Park. Cellular hydrogel biopaper for patterned 3D cell culture and modular tissue reconstruction. Adv. Healthc. Mater. 1:635–639, 2012.
Lin, M. C., F. Almus-Jacobs, H. H. Chen, G. C. Parry, N. Mackman, J. Y. Shyy, and S. Chien. Shear stress induction of the tissue factor gene. J. Clin. Invest. 99:737–744, 1997.
Maidhof, R., N. Tandon, E. J. Lee, J. Luo, Y. Duan, K. Yeager, E. Konofagou, and G. Vunjak-Novakovic. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J. Tissue Eng. Regen. Med. 6:e12–e23, 2012.
McCormick, S. M., S. G. Eskin, L. V. McIntire, C. L. Teng, C.-M. Lu, C. G. Russell, and K. K. Chittur. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. USA 98:8955–8960, 2001.
McGuigan, A. P., and M. V. Sefton. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. USA 103:11461–11466, 2006.
Moore, Jr, J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994.
Nagel, T., N. Resnick, C. F. Dewey, Jr, and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825–1834, 1999.
Niven, R. K. Physical insight into the Ergun and Wen & Yu equations for fluid flow in packed and fluidised beds. Chem. Eng. Sci. 57:527–534, 2002.
Ohura, N., K. Yamamoto, S. Ichioka, T. Sokabe, H. Nakatsuka, A. Baba, M. Shibata, T. Nakatsuka, K. Harii, Y. Wada, T. Kohro, T. Kodama, and J. Ando. Global analysis of shear stress-responsive genes in vascular endothelial cells. J. Atheroscler. Thromb. 10:304–313, 2003.
Pang, Y., K. Montagne, M. Shinohara, K. Komori, and Y. Sakai. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres. Biofabrication 4:045004, 2012.
Radisic, M., L. Yang, J. Boublik, R. J. Cohen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H507–H516, 2004.
Rotem, A., M. Toner, R. G. Tompkins, and M. L. Yarmush. Oxygen uptake rates in cultured rat hepatocytes. Biotechnol. Bioeng. 40:1286–1291, 1992.
Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.
Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. USA 100:14683–14688, 2003.
Surapaneni, S., T. Pryor, M. D. Klein, and H. W. Matthew. Rapid hepatocyte spheroid formation: optimization and long-term function in perfused microcapsules. ASAIO J. 43:M848–M853, 1997.
Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr, and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.
Tiruvannamalai Annamalai, R., D. R. Mertz, E. L. Daley, and J. P. Stegemann. Collagen type II enhances chondrogenic differentiation in agarose-based modular microtissues. Cytotherapy 18:263–277, 2016.
Tiruvannamalai-Annamalai, R., D. R. Armant, and H. W. T. Matthew. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS ONE 9:e84287, 2014.
TiruvannamalaiAnnamalai, R., A. Y. Rioja, A. J. Putnam, and J. P. Stegemann. Vascular network formation by human microvascular endothelial cells in modular fibrin microtissues. ACS Biomater. Sci. Eng. 2:1914–1925, 2016.
Wybenga, D. R., J. Di Giorgio, and V. J. Pileggi. Manual and automated methods for urea nitrogen measurement in whole serum. Clin. Chem. 17:891–895, 1971.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4