Adelöw, C. A. M., and P. Frey. Synthetic hydrogel matrices for guided bladder tissue regeneration. Methods Mol. Med. 140:125–140, 2007.
Amoroso, N. J., A. D’Amore, Y. Hong, C. P. Rivera, M. S. Sacks, and W. R. Wagner. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater. 8(12):4268–4277, 2012.
Atala, A., S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik. Tissue-engineered autologous bladders for patients needing cystoplasty. The Lancet 367(9518):1241–1246, 2006.
Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19):3631–3638, 2006.
Dahms, S. E., H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br. J. Urol. 82(3):411–419, 1998.
Eberli, D., L. F. Filho, A. Atala, and J. J. Yoo. Composite scaffolds for the engineering of hollow organs and tissues. Methods 47(2):109–115, 2009.
Fujimoto, K. L., K. Tobita, W. D. Merryman, J. Guan, N. Momoi, D. B. Stolz, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49(23):2292–2300, 2007.
Gloeckner, D. C., M. S. Sacks, M. O. Fraser, G. T. Somogyi, W. C. de Groat, and M. B. Chancellor. Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. J. Urol. 167(5):2247–2252, 2002.
Hong, Y., J. Guan, K. L. Fujimoto, R. Hashizume, A. L. Pelinescu, and W. R. Wagner. Tailoring the degradation kinetics of poly (ester carbonate urethane) urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31(15):4249–4258, 2010.
Hughes, F. M., H. M. Hill, C. M. Wood, A. T. Edmondson, A. Dumas, W. C. Foo, J. M. Oelsen, G. Rac, and J. T. Purves. The NLRP3 inflammasome mediates inflammation produced by bladder outlet obstruction. J. Urol. 195:1598–1605, 2016.
Jack, G. S., R. Zhang, M. Lee, Y. Xu, B. M. Wu, and L. V. Rodriguez. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30(19):3259–3270, 2009.
Joseph, D. B., J. G. Borer, R. E. De Filippo, S. J. Hodges, and G. A. McLorie. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J. Urol. 191(5):1389–1395, 2014.
Khurana, I. Excretory system. In: Essentials of Medical Physiology, edited by R. Pathak, and S. Nasim. Noida: Elsevier, 2008, pp. 339–340.
Kim, J. H., H. J. Lee, and Y. S. Song. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J. Urol. 55(4):228–238, 2014.
Korossis, S., F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate. Tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng. 12(4):635–644, 2006.
Lei, Y., A. Grover, A. Sinha, and N. Vyavahare. Efficacy of reversal of aortic calcification by chelating agents. Calcif. Tissue Int. 93(5):426–435, 2013.
Maddena, L. R., D. J. Mortisen, E. M. Sussmana, S. K. Duprasc, J. A. Fugatec, J. L. Cuya, K. D. Haucha, M. A. Laflammea, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. PNAS 107(34):15211–15216, 2010.
Mauney, J. R., G. M. Cannon, M. L. Lovett, E. M. Gong, D. D. Vizio, P. Gomez, III, D. L. Kaplan, R. M. Adama, and C. R. Estrada, Jr. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials 32:808–818, 2011.
Nagatomi, J., D. C. Gloeckner, M. Chancellor, W. deGroat, and M. Sacks. Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Ann. Biomed. Eng. 32(10):1409–1419, 2004.
Oberpenning, F., J. Meng, J. J. Yoo, and A. Atala. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17(2):149–155, 1999.
Piechota, H. J., C. A. Gleason, S. E. Dahms, R. Dahiya, L. S. Nunes, T. F. Lue, and E. A. Tanagho. Bladder acellular matrix graft: in vivo functional properties of the regenerated rat bladder. Urol. Res. 27:206–213, 1999.
Sacks, M. S. A method for planar biaxial mechanical testing that includes in-plane shear. ASME J. Biomech. Eng. 121(5):551–555, 1999.
Sant, S., C. M. Hwang, S. Lee, and A. Khademhosseini. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J. Tissue Eng. Regen. Med. 5(4):283–291, 2011.
Sant, S., D. Iyer, A. K. Gaharwar, A. Patel, and A. Khademhosseini. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate–polycaprolactone scaffolds. Acta Biomater. 9(4):5963–5973, 2013.
Seth, A., Y. G. Chung, E. S. Gil, D. Tu, D. Franck, and D. Di Vizio. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials 34(20):4758–4765, 2013.
Sivaraman, S., and J. Nagatomi. Polymer-based scaffolds for urinary bladder tissue engineering. In: Polymers for Vascular and Urogenital Applications, edited by S. W. Shalaby, K. J. Burg, and W. Shalaby. Florida: CRC Press, 2012, pp. 175–200.
Sivaraman, S., R. Ostendorff, B. Fleishman, and J. Nagatomi. Tetronic®-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications. J. Biomater. Sci. Polym. Ed. 26(3):196–210, 2015.
Sloff, M., V. Simaioforidis, R. de Vries, E. Oosterwijk, and W. Feitz. Tissue engineering of the bladder—reality or myth? A systematic review. J. Urol. 192(4):1035–1042, 2014.
Stankus, J. J., L. Soletti, K. Fujimoto, Y. Hong, D. A. Vorp, and W. R. Wagner. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials 28(17):2738–2746, 2007.
Yoo, J. J., J. Meng, F. Oberpenning, and A. Atala. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2):221–225, 1998.
Zderic, S. A., S. Chacko, M. E. Disanto, and A. J. Wein. Voiding function: relevant anatomy, physiology, pharmocology and molecular aspects. In: Adult and Pediatric Urology, edited by J. Y. Gillenwater, J. T. Grayhack, S. S. Howards, and M. E. Mitchell. Philadelphia: Lippincott Williams and Wilkins, 2007, pp. 1067–1068.
Zhang, Y., B. P. Kropp, H. K. Ling, R. Cowan, and E. Y. Cheng. Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng. 10:181–187, 2004.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4