A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-018-02181-1 below:

Compact Neural Interface Using a Single Multichannel Cuff Electrode for a Functional Neuromuscular Stimulation System

References
  1. Abbas, J. J., and H. J. Chizeck. Neural network control of functional neuromuscular stimulation systems: computer simulation studies. IEEE Trans. Biomed. Eng. 42:1117–1127, 1995.

    Article  CAS  PubMed  Google Scholar 

  2. Cavallaro, E., S. Micera, P. Dario, W. Jensen, and T. Sinkjaer. On the intersubject generalization ability in extracting kinematic information from afferent nervous signals. IEEE Trans. Biomed. Eng. 50:1063–1073, 2003.

    Article  PubMed  Google Scholar 

  3. Chu, J. U., K. I. Song, S. Han, S. H. Lee, J. Kim, J. Y. Kang, D. Hwang, J. K. Suh, K. Choi, and I. Youn. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems. Physiol. Meas. 33:943–967, 2012.

    Article  PubMed  Google Scholar 

  4. Crago, P. E., J. T. Mortimer, and P. H. Peckham. Closed-loop control of force during electrical stimulation of muscle. IEEE Trans. Biomed. Eng. 27:306–312, 1980.

    Article  CAS  PubMed  Google Scholar 

  5. Creasey, G. H., C. H. Ho, R. J. Triolo, D. R. Gater, A. F. DiMarco, K. M. Bogie, and M. W. Keith. Clinical applications of electrical stimulation after spinal cord injury. J. Spinal Cord Med. 27:365–375, 2004.

    Article  PubMed  Google Scholar 

  6. Durfee, W. K., and K. E. Maclean. Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 36:654–667, 1989.

    Article  CAS  PubMed  Google Scholar 

  7. Grill, W. M., M. D. Craggs, R. D. Foreman, C. L. Ludlow, and J. L. Buller. Emerging clinical applications of electrical stimulation: opportunities for restoration of function. J. Rehabil. Res. Dev. 38:641–653, 2001.

    CAS  PubMed  Google Scholar 

  8. Grill, W. M., and J. T. Mortimer. Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans. Rehabil. Eng. 4:49–62, 1996.

    Article  PubMed  Google Scholar 

  9. Haugland, M. K., and J. A. Hoffer. Slip information provided by nerve cuff signals: application in closed-loop control of functional electrical stimulation. IEEE Trans. Rehabil. Eng. 2:29–36, 1994.

    Article  Google Scholar 

  10. Hoffer, J. A., R. B. Stein, M. K. Haugland, T. Sinkjær, W. K. Durfee, A. B. Schwartz, G. E. Loeb, and C. Kantor. Neural signals for command control and feedback in functional neuromuscular stimulation: a review. J. Rehabil. Res. Dev. 33:145–157, 1996.

    CAS  PubMed  Google Scholar 

  11. Inmann, A., and M. Haugland. Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis. Med. Eng. Phys. 26:449–458, 2004.

    Article  PubMed  Google Scholar 

  12. Jensen, W., S. M. Lawrence, R. R. Riso, and T. Sinkjaer. Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits. IEEE Trans. Neural Syst. Rehabil. Eng. 9:265–273, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Jensen, W., T. Sinkjær, and F. Sepulveda. Improving signal reliability for on-line joint angle estimation from nerve cuff recordings of muscle afferents. IEEE Trans. Neural Syst. Rehabil. Eng. 10:133–139, 2002.

    Article  PubMed  Google Scholar 

  14. Jezernik, S., and W. M. Grill. Optimal filtering of whole nerve signals. J. Neurosci. Methods 106:101–110, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Kobetic, R., R. J. Triolo, and E. B. Marsolais. Muscle selection and walking performance of multichannel FES systems for ambulation in paraplegia. IEEE Trans. Rehabil. Eng. 5:23–29, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. H., J. H. Jung, Y. M. Chae, J. K. F. Suh, and J. Y. Kang. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering. J. Micromech. Microeng. 20:35015, 2010.

    Article  CAS  Google Scholar 

  17. Micera, S., P. M. Rossini, J. Rigosa, L. Citi, J. Carpaneto, S. Raspopovic, M. Tombini, C. Cipriani, G. Assenza, M. C. Carrozza, and K. P. Hoffmann. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J. Neuroeng. Rehabil. 8:53, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park, H., and D.M. Durand. Motion control of the rabbit ankle joint using a flat interface nerve electrode. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE, 3–6 Sept 2009, pp. 6789–6792, 2009.

  19. Park, H., and D. M. Durand. Motion control of the rabbit ankle joint with a flat interface nerve electrode. Muscle Nerve 52:1088–1095, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peckham, P. H., and J. S. Knutson. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7:327–360, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Riso, R. R., F. K. Mosallaie, W. Jensen, and T. Sinkjaer. Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion. IEEE Trans. Rehabil. Eng. 8(2):244–258, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Rozman, J., B. Zorko, and M. Bunc. Selective recording of electroneurograms from the sciatic nerve of a dog with multi-electrode spiral cuffs. Jpn. J. Physiol. 50:509–514, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Sinkjaer, T. Integrating sensory nerve signals into neural prosthesis devices. Neuromodulation 3:35–41, 2000.

    Article  Google Scholar 

  24. Sinkjær, T., M. Haugland, A. Inmann, M. Hansen, and K. D. Nielsen. Biopotentials as command and feedback signals in functional electrical stimulation systems. Med. Eng. Phys. 25:29–40, 2003.

    Article  PubMed  Google Scholar 

  25. Song, K. I., J. U. Chu, S. E. Park, D. Hwang, and I. Youn. Ankle-angle estimation from blind source separated afferent activity in the sciatic nerve for closed-loop functional neuromuscular stimulation system. IEEE Trans. Biomed. Eng. 64:834–843, 2017.

    Article  PubMed  Google Scholar 

  26. Strange, K. D., and J. A. Hoffer. Gait phase information provided by sensory nerve activity during walking: Applicability as state controller feedback for FES. IEEE Trans. Biomed. Eng. 46:797–809, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Strange, K. D., and J. A. Hoffer. Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking. IEEE Trans. Rehabil. Eng. 7:289–300, 1999.

    Article  CAS  PubMed  Google Scholar 

  28. Upshaw, B., and T. Sinkjær. Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes. IEEE Trans. Rehabil. Eng. 6:172–181, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Veltink, P. H., H. J. Chizeck, P. E. Crago, and A. El-Bialy. Nonlinear joint angle control for artificially stimulated muscle. IEEE Trans. Biomed. Eng. 39:368–380, 1992.

    Article  CAS  PubMed  Google Scholar 

  30. Veraart, V., W. M. Grill, and J. T. Mortimer. Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans. Rehabil. Eng. 40:640–653, 1993.

    Article  CAS  Google Scholar 

  31. Yoo, P. B., and D. M. Durand. Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans. Biomed. Eng. 52:1461–1469, 2005.

    Article  PubMed  Google Scholar 

  32. Ziegler, J. G., and N. B. Nichols. Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control 115:220–222, 1993.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4