American Society for Testing and Materials (ASTM) International. Designation: F2503-05. Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment. West Conshohocken, PA: ASTM International, 2005.
Bergeles, C., P. Vartholomeos, L. Qin, and P. E. Dupont. Closed-loop commutation control of an MRI-powered robot actuator. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013. IEEE, 2013, pp. 698–703.
Briggs, R. W., et al. A pneumatic vibrotactile stimulation device for fMRI. Magn. Reson. Med. 51(3):640–643, 2004.
Chen, Y., J. Ge, K.-W. Kwok, K. R. Nilsson, M. Fok, and T. T. Zion. MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures. J. Cardiovasc. Magn. Reson. 16(Suppl 1):P150, 2014.
Chen, Y., K. W. Kwok, and Z. T. H. Tse. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann. Biomed. Eng. 42(9):1823–1833, 2014.
Chen, Y., C. D. Mershon, and Z. T. H. Tse. A 10-mm MR-conditional unidirectional pneumatic stepper motor. IEEE/ASME Trans. Mechatron. 20:1–7, 2014.
Chinzei, K., R. Kikinis, and F. A. Jolesz. MR compatibility of mechatronic devices: design criteria. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI’99, Proceedings, January 1999, vol. 1679, pp. 1020–1030.
Fischer, G. S., S. P. DiMaio, I. Iordachita, and G. Fichtinger. Development of a robotic assistant for needle-based transperineal prostate interventions in MRI. In: MICCAI, November 2007, vol. 4791, pp. 425–433.
Fischer, G. S., et al. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans. Mechatron. 13(3):295–305, 2008.
Gassert, R., A. Yamamoto, D. Chapuis, L. Dovat, H. Bleuler, and E. Burdet. Actuation methods for applications in MR environments. Concepts Magn. Reson. B 29B(4):191–209, 2006.
Groenhuis, V. et al. Stormram 2: a MRI-compatible robotic system for breast biopsy. In: Hamlyn Symposium on Medical Robotics, 2016, pp. 52–53.
Hall, W. A., and C. L. Truwit. Intraoperative MR-guided neurosurgery. J. Magn. Reson. Imaging 27(2):368–375, 2008.
Han, B. K., M. D. Schnall, S. G. Orel, and M. Rosen. Outcome of MRI-guided breast biopsy. Am. J. Roentgenol. 191(6):1798–1804, 2008.
Hetts, S., et al. Endovascular catheter for magnetic navigation under MR imaging guidance: evaluation of safety in vivo at 1.5 T. Am. J. Neuroradiol. 34(11):2083–2091, 2013.
Kwok, K.-W., et al. MRI-based visual and haptic catheter feedback: simulating a novel system’s contribution to efficient and safe MRI-guided cardiac electrophysiology procedures. J. Cardiovasc. Magn. Reson. 16(Suppl 1):O50, 2014.
Liberman, L., N. Bracero, E. Morris, C. Thornton, and D. D. Dershaw. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. Am. J. Roentgenol. 185(1):183–193, 2005.
Masamune, K., et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. Comput. Aided Surg. 1(4):242–248, 1995.
McDannold, N., G. Clement, P. Black, F. Jolesz, and K. Hynynen. Transcranial MRI-guided focused ultrasound surgery of brain tumors: initial findings in three patients. Neurosurgery 66(2):323, 2010.
Muntener, M., et al. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68(6):1313–1317, 2006.
Navkar, N. V., Z. Deng, D. J. Shah, and N. V. Tsekos. A Framework for integrating real-time MRI with robot control: application to simulated transapical cardiac interventions. IEEE Trans. Biomed. Eng. 60(4):1023–1033, 2013.
Okamura, A. M., C. Simone, and M. D. O’Leary. Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 51(10):1707–1716, 2004.
Pondman, K. M., et al. MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur. Urol. 54(3):517–527, 2008.
Sajima, H., H. Kamiuchi, K. Kuwana, T. Dohi, and K. Masamune. MR-safe pneumatic rotation stepping actuator. J. Robot. Mechatron. 24(5):820–827, 2012.
Secoli, R., et al. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator. J. Eng. Med. 229(6):215–224, 2015.
Song, S. E., N. Hata, I. Iordachita, G. Fichtinger, C. Tempany, and J. Tokuda. A workspace‐orientated needle‐guiding robot for 3T MRI‐guided transperineal prostate intervention: evaluation of in‐bore workspace and MRI compatibility. Int. J. Med. Robot. Comput. Assist. Surg. 2012. https://doi.org/10.1002/rcs.1430.
Stoianovici, D., A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12(1):98–106, 2007.
Tse, Z. T. H., H. Elhawary, M. Rea, B. Davies, I. Young, and M. Lamperth. Haptic needle unit for MR-guided biopsy and its control. IEEE/ASME Trans. Mechatron. 17(1):183–187, 2012.
Vartholomeos, P., C. Bergeles, L. Qin, and P. E. Dupont. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int. J. Robot. Res. 32(13):1536–1552, 2013.
Wang, Y., H. Su, K. Harrington, and G. Fischer. Sliding mode control of piezoelectric valve regulated pneumatic actuator for MRI-compatible robotic intervention. In: ASME Dynamic Systems and Control Conference—DSCC, 2010.
Zappe, A. C., T. Maucher, K. Meier, and C. Scheiber. Evaluation of a pneumatically driven tactile stimulator device for vision substitution during fMRI studies. Magn. Reson. Med. 51(4):828–834, 2004.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4