Alimohamadi H. Numerical simulation of porosity effect on blood flow pattern and atherosclerotic plaques temperature. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2:44–49, 2014.
Anlamlert, W., Y. Lenbury, and J. Bell. Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior. Adv. Differ. Equ. 2017:195, 2017.
Barrett, S. R. H., M. P. F. Sutcliffe, S. Howarth, Z. Y. Li, and J. H. Gillard. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42:1650–1655, 2009.
Brown, A. J., Z. Z. Teng, P. C. Evans, J. H. Gillard, H. Samady, and M. R. Bennett. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev. Cardiol. 13:210–220, 2016.
Cai, Y., S. Xu, J. Wu, and Q. Long. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol. 279:90–101, 2011.
Chalmers, A. D., A. Cohen, C. A. Bursill, and M. R. Myerscough. Bifurcation and dynamics in a mathematical model of early atherosclerosis: how acute inflammation drives lesion development. J. Math. Biol. 71:1451–1480, 2015.
Chien, S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003.
Cobbold, C. A., J. A. Sherratt, and S. R. J. Maxwell. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull. Math. Biol. 64:65–95, 2002.
de Vries, M. R., and P. H. A. Quax. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol. 27:499–506, 2016.
Dolan, J. M., J. Kolega, and H. Meng. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41:1411–1427, 2013.
Dolan, J. M., F. J. Sim, H. Meng, and J. Kolega. Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am. J. Physiol.-Cell Physiol. 302:C1109–C1118, 2012.
Doran, A. C., N. Meller, and C. A. McNamara. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28:812–819, 2008.
El Khatib, N., S. Genieys, B. Kazmierczak, and V. Volpert. Reaction-diffusion model of atherosclerosis development. J. Math. Biol. 65:349–374, 2012.
Fok, P. W. Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem. J. Theor. Biol. 314:23–33, 2012.
Fong, G. H. Potential contributions of intimal and plaque hypoxia to atherosclerosis. Curr. Atheroscler. Rep. 17:510, 2015.
Friedman, A., and W. R. Hao. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bull. Math. Biol. 77:758–781, 2015.
Gao, H., Q. Long, M. Graves, J. H. Gillard, and Z. Y. Li. Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in vivo magnetic resonance images of four patients. J. Biomech. 42:1416–1423, 2009.
Goodman, M. E., X. Y. Luo, and N. A. Hill. A mathematical model on the feedback between wall shear stress and intimal hyperplasia. Int. J. Appl. Mech. 08:1640011, 2016.
Groh, L., S. T. Keating, L. A. B. Joosten, M. G. Netea, and N. P. Riksen. Monocyte and macrophage immunometabolism in atherosclerosis. Semin. Immunopathol. 40:203–214, 2018.
Grootaert, M. O. J., M. Moulis, L. Roth, W. Martinet, C. Vindis, M. R. Bennett, and G. R. Y. De Meyer. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res. 114:622–634, 2018.
Guo, M. Y., Y. Cai, X. K. Yao, and Z. Y. Li. Mathematical modeling of atherosclerotic plaque destabilization: role of neovascularization and intraplaque hemorrhage. J. Theor. Biol. 450:53–65, 2018.
Hansson, G. K., P. Libby, and I. Tabas. Inflammation and plaque vulnerability. J. Intern. Med. 278:483–493, 2015.
Harrington, J. R. The role of MCP-1 in atherosclerosis. Stem Cells 18:65–66, 2000.
Hidalgo, A., L. Tello, and E. F. Toro. Numerical and analytical study of an atherosclerosis inflammatory disease model. J. Math. Biol. 68:1785–1814, 2014.
Inoue, M., H. Itoh, M. Ueda, T. Naruko, A. Kojima, R. Komatsu, K. Doi, Y. Ogawa, N. Tamura, K. Takaya, T. Igaki, J. Yamashita, T. H. Chun, K. Masatsugu, A. E. Becker, and K. Nakao. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions—possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–2116, 1998.
Jain, R. K., A. V. Finn, F. D. Kolodgie, H. K. Gold, and R. Virmani. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat. Clin. Pract. Cardiovasc. Med. 4:491–502, 2007.
Koshiba, N., J. Ando, M. Chen, and T. Hisada. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J. Biomech. Eng.-Trans. Asme 129:374–385, 2007.
Kwak, B. R., M. Back, M. L. Bochaton-Piallat, G. Caligiuri, M. J. A. P. Daemens, P. F. Davies, I. E. Hoefer, P. Holvoet, H. Jo, R. Krams, S. Lehoux, C. Monaco, S. Steffens, R. Virmani, C. Weber, J. J. Wentzel, and P. C. Evans. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35(3013–3020):3020a–3020d, 2014.
Ley, K., Y. I. Miller, and C. C. Hedrick. Monocyte and macrophage dynamics during atherogenesis. Arterioscler., Thromb., Vasc. Biol. 31:1506–1516, 2011.
Li, Z. Y., S. P. Howarth, T. Tang, and J. H. Gillard. How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke: J. Cereb. Circ. 37:1195–1199, 2006.
Li, Z. Y., S. Howarth, R. A. Trivedi, J. M. Ukingim, M. J. Graves, A. Brown, L. Q. Wang, and J. H. Gillard. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39:2611–2622, 2006.
Michel J. B., R. Virmani, E. Arbustini and G. Pasterkamp. Intraplaque haemorrhages as the trigger of plaque vulnerability. European Heart Journal 32: 1977–1985, 1985a, 1985b, 1985c, 2011.
Moore, K. J., F. J. Sheedy, and E. A. Fisher. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev.: Immunol. 13:709–721, 2013.
Olgac, U., V. Kurtcuoglu, and D. Poulikakos. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am. J. Physiol.-Heart Circ. Physiol. 294:H909–919, 2008.
Parma, L., F. Baganha, P. H. A. Quax, and M. R. de Vries. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 816:107–115, 2017.
Rai, S., D. E. Thaler, P. Salehi, N. Madan, and L. Y. Leung. More to atherosclerosis than stenosis: symptomatic carotid artery with intraplaque hemorrhage. Stroke 48:e104–e107, 2017.
Roustaei, M., M. R. Nikmaneshi, and B. Firoozabadi. Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension. J. Biomech. 67:114–122, 2018.
Silva, T., A. Sequeira, R. F. Santos, and J. Tiago. Mathematical modeling of atherosclerotic plaque formation coupled with a non-newtonian model of blood flow. Conf. Pap. Math. 1–14:2013, 2013.
Silvestre-Roig, C., M. P. de Winther, C. Weber, M. J. Daemen, E. Lutgens, and O. Soehnlein. Atherosclerotic plaque destabilization mechanisms, models, and therapeutic strategies. Circ. Res. 114:214–226, 2014.
Teng, Z. Z., U. Sadat, A. J. Brown, and J. H. Gillard. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations. J. Biomech. 47:847–858, 2014.
Tiago, J. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discret. Contin. Dyn. Syst.-Ser. S 9:343–362, 2016.
Timmins, L. H., D. S. Molony, P. Eshtehardi, M. C. McDaniel, J. N. Oshinski, D. P. Giddens, and H. Samady. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease. J. Royal Soc. Interface 14:20160927, 2017.
Wiesner, P., M. Tafelmeier, D. Chittka, S. H. Choi, L. Zhang, Y. S. Byun, F. Almazan, X. Yang, N. Iqbal, P. Chowdhury, A. Maisel, J. L. Witztum, T. M. Handel, S. Tsimikas, and Y. I. Miller. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma. J. Lipid Res. 54:1877–1883, 2013.
Yilmaz, A., B. Lipfert, I. Cicha, K. Schubert, M. Klein, D. Raithel, W. G. Daniel, and C. D. Garlichs. Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Exp. Mol. Pathol. 82:245–255, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4