Alvarez, M. M., J. C. Liu, G. Trujillo-de Santiago, et al. Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications. J. Control Release. 1:1–10, 2015. https://doi.org/10.1016/j.jconrel.2016.01.026.
Ambati, B. K., M. Nozaki, N. Singh, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997, 2006. https://doi.org/10.1038/nature05249.Corneal.
Armulik, A., A. Abramsson, and C. Betsholtz. Endothelial/pericyte interactions. Circ. Res. 97(6):512–523, 2005. https://doi.org/10.1161/01.RES.0000182903.16652.d7.
Arras, M., W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101(1):40–50, 1998. https://doi.org/10.1172/JCI119877.
Awojoodu, A. O., M. E. Ogle, L. S. Sefcik, et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl. Acad. Sci. USA 110(34):13785–13790, 2013. https://doi.org/10.1073/pnas.1221309110.
Barnett, F. H., M. Rosenfeld, M. Wood, et al. Macrophages form functional vascular mimicry channels in vivo. Sci. Rep. 6:36659, 2016. https://doi.org/10.1038/srep36659.
Brown, B. N., B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802, 2012. https://doi.org/10.1016/j.biomaterials.2012.02.034.
Cao, R., E. Brakenhielm, R. Pawliuk, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9(5):548–553, 2003.
Daley, J. M., S. K. Brancato, A. A. Thomay, J. S. Reichner, and J. E. Albina. The phenotype of murine wound macrophages. J. Leukoc. Biol. 87(1):59–67, 2010. https://doi.org/10.1189/jlb.0409236.
Das, A., M. Sinha, S. Datta, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol. 185(10):2596–2606, 2015. https://doi.org/10.1016/j.ajpath.2015.06.001.
DeFalco, T., I. Bhattacharya, A. V. Williams, D. M. Sams, and B. Capel. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. 111(23):E2384–E2393, 2014. https://doi.org/10.1073/pnas.1400057111.
DiPietro, L. A. Wound healing: the role of the macrophage and other immune cells. Shock. 4(4):233–240, 1995.
Dondossola, E., B. M. Holzapfel, S. Alexander, S. Filippini, D. W. Hutmacher, and P. Friedl. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1(1):1–20, 2017. https://doi.org/10.1038/s41551-016-0007.
Du, R., K. V. Lu, C. Petritsch, et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220, 2008. https://doi.org/10.1016/j.ccr.2008.01.034.
Fantin, A., J. M. Vieira, G. Gestri, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840, 2010. https://doi.org/10.1182/blood-2009-12-257832.
Fournier, G. A., G. A. Lutty, S. Watt, A. Fenselau, and A. Patz. A corneal micropocket assay for angiogenesis in the rat eye. Investig. Ophthalmol. Vis. Sci. 21(2):351–354, 1981.
Garash, R., A. Bajpai, B. M. Marcinkiewicz, and K. L. Spiller. Drug delivery strategies to control macrophages for tissue repair and regeneration. Exp. Biol. Med. 2016. https://doi.org/10.1177/1535370216649444.
Geissmann, F., S. Jung, and D. R. Littman. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82, 2003. https://doi.org/10.1016/S1074-7613(03)00174-2.
Gerri, C., R. Marín-Juez, M. Marass, A. Marks, H.-M. Maischein, and D. Y. R. Stainier. Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat. Commun. 8(May):15492, 2017. https://doi.org/10.1038/ncomms15492.
Gordon, S., and P. R. Taylor. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12):953–964, 2005. https://doi.org/10.1038/nri1733.
Griffith, L. G., and G. Naughton. Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002. https://doi.org/10.1126/science.1069210.
Hasan, A., A. Paul, N. E. Vrana, et al. Microfluidic techniques for development of 3D vacularized tissue. Biomaterials 35(1):7308–7325, 2014. https://doi.org/10.1088/1367-2630/15/1/015008.Fluid.
Hibino, N., T. Yi, D. R. Duncan, et al. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. Faseb J. 25(12):4253–4263, 2011. https://doi.org/10.1096/fj.11-186585.
Hsieh, J., T. Smith, V. Meli, T. Tran, E. Botvinick, and W. F. Liu. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 47:14–24, 2016. https://doi.org/10.1016/j.cyto.2014.10.031.Interleukin-10.
Hsu, C. W., R. A. Poché, J. E. Saik, et al. Improved angiogenesis in response to localized delivery of macrophage-recruiting molecules. PLoS ONE 10(7):1–27, 2015. https://doi.org/10.1371/journal.pone.0131643.
Jetten, N., S. Verbruggen, M. J. Gijbels, M. J. Post, M. P. J. De Winther, and M. M. P. C. Donners. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17(1):109–118, 2014. https://doi.org/10.1007/s10456-013-9381-6.
Kappel, D. F. Organ donation in the United States—2014. J. Leg. Med. 36(1):7–16, 2015. https://doi.org/10.1080/01947648.2015.1047299.
Koh, T. J., and L. A. DiPietro. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13:e23, 2011. https://doi.org/10.1017/S1462399411001943.
Krieger, J. R., M. E. Ogle, J. McFaline-Figueroa, C. E. Segar, J. S. Temenoff, and E. A. Botchwey. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials 77:280–290, 2016. https://doi.org/10.1016/j.biomaterials.2015.10.045.
Kumar, A. H. S., K. Martin, E. C. Turner, et al. Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0057230.
Lee, K. Y. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012. https://doi.org/10.1016/j.progpolymsci.2011.06.003.Alginate.
Leibovich, S. J., P. J. Polverini, H. M. Shepard, D. M. Wiseman, V. Shively, and N. Nuseir. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329(6140):630–632, 1987. https://doi.org/10.1038/329630a0.
Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229(2):176–185, 2013. https://doi.org/10.1002/path.4133.
Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M 2 mononuclear phagocytes. Trends Immunol. 23(11):549–555, 2002.
Martinez, F. O., and S. Gordon. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13, 2014. https://doi.org/10.12703/p6-13.
Moldovan, N. I., P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87(5):378–384, 2000. https://doi.org/10.1161/01.RES.87.5.378.
Moon, J. J., and J. L. West. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr. Top. Med. Chem. 8(4):300–310, 2008. https://doi.org/10.2174/156802608783790983.
Moore, E. M., V. Suresh, G. Ying, and J. L. West. M0 and M2 macrophages enhance vascularization of tissue engineering scaffolds. Regen. Eng. Transl. Med. 2018. https://doi.org/10.1007/s40883-018-0048-0.
Moore, E. M., G. Ying, and J. L. West. Macrophages influence vessel formation in 3D bioactive hydrogels. Adv. Biosyst. 2017. https://doi.org/10.1002/adbi.201600021.
Murray, P. J., J. E. Allen, S. K. Biswas, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20, 2014. https://doi.org/10.1016/j.immuni.2014.06.008.
Nathan, C. F. Secretory products of macrophage. J. Clin. Invest. 79(February):319–326, 1987. https://doi.org/10.1172/JCI112815.
Nomi, M., A. Atala, P. De Coppi, and S. Soker. Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23(6):463–483, 2002. https://doi.org/10.1016/S0098-2997(02)00008-0.
Novak, M. L., and T. J. Koh. Phenotypic transitions of macrophages orchestrate tissue repair. Am. J. Pathol. 183(5):1352–1363, 2013. https://doi.org/10.1016/j.ajpath.2013.06.034.
Nsiah, B. A., E. M. Moore, L. C. Roudsari, N. K. Virdone, and J. L. West. Angiogenesis in Hydrogel Biomaterials. Durham: Duke University, 2015. https://doi.org/10.1016/b978-1-78242-105-4.00008-0.
Nucera, S., D. Biziato, and M. de Palma. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int. J. Dev. Biol. 55(4–5):495–503, 2011. https://doi.org/10.1387/ijdb.103227sn.
Okuno, Y., A. Nakamura-Ishizu, K. Kishi, T. Suda, and Y. Kubota. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117(19):5264–5272, 2011. https://doi.org/10.1182/blood-2011-01-330720.
Peters, E. B., N. Christoforou, E. Moore, J. L. West, and G. A. Truskey. CD45 + cells present within mesenchymal stem cell populations affect network formation of blood-derived endothelial outgrowth cells. Biores. Open Access. 4:75–88, 2015. https://doi.org/10.1089/biores.2014.0029.
Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. Garcia. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. 107(8):3323–3328, 2010. https://doi.org/10.1073/pnas.0905447107.
Poché, R. A., J. E. Saik, J. L. West, and M. E. Dickinson. The mouse cornea as a transplantation site for live imaging of engineered tissue constructs. Cold Spring Harb. Protoc. 5(4):1–11, 2010. https://doi.org/10.1101/pdb.prot5416.
Polverini, P. J., P. S. Cotran, M. A. Gimbrone, and E. R. Unanue. Activated macrophages induce vascular proliferation. Nature 269(5631):804–806, 1977. https://doi.org/10.1038/269804a0.
Przaeres, P., V. Almeida, L. Lousado, et al. Macrophages generate pericytes in the developing brain macrophages generate pericytes in the developing brain. Cell Mol. Neurobiol. 1:1–10, 2017. https://doi.org/10.1007/s10571-017-0549-2.
Rehman, J., J. Li, C. M. Orschell, and K. L. March. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169, 2003. https://doi.org/10.1161/01.CIR.0000058702.69484.A0.
Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Access polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.
Rohde, E., C. Malischnik, D. Thaler, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells. 24(2):357–367, 2006. https://doi.org/10.1634/stemcells.2005-0072.
Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26(8):434–441, 2008. https://doi.org/10.1016/j.tibtech.2008.04.009.
Rymo, S. F., H. Gerhardt, F. W. Sand, R. Lang, A. Uv, and C. Betsholtz. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0015846.
Sidky, Y. A., and E. C. Borden. Inhibition of angiogenesis by interferons: effects on tumor-and lymphocyte-induced vascular responses. Cancer Res. 47(19):5155–5161, 1987.
Spiller, K. L., R. R. Anfang, K. J. Spiller, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488, 2014. https://doi.org/10.1016/j.biomaterials.2014.02.012.
Spiller, K. L., S. Nassiri, C. E. Witherel, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207, 2015. https://doi.org/10.1016/j.biomaterials.2014.10.017.
Sunderkötter, C., M. Goebeler, K. Schulze-Osthoff, R. Bhardwaj, and C. Sorg. Macrophage-derived angiogenesis factors. Pharmacol. Ther. 51(2):195–216, 1991. https://doi.org/10.1016/0163-7258(91)90077-Y.
Takemura, R., and Z. Werb. Secretory products of macrophages and their physiological functions. Am. J. Physiol. 246(1 Pt 1):C1–C9, 1984.
Tang, N., L. Wang, J. Esko, et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495, 2004. https://doi.org/10.1016/j.ccr.2004.09.026.
Tattersall, I. W., J. Du, Z. Cong, et al. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment. Angiogenesis 19(2):201–215, 2016. https://doi.org/10.1007/s10456-016-9501-1.
Von Tell, D., A. Armulik, and C. Betsholtz. Pericytes and vascular stability. Exp. Cell Res. 312(5):623–629, 2006. https://doi.org/10.1016/j.yexcr.2005.10.019.
Wynn, T. A. A., and K. M. M. Vannella. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462, 2016. https://doi.org/10.1016/j.immuni.2016.02.015.
Yamamoto, S., M. Muramatsu, E. Azuma, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 1:1–16, 2017. https://doi.org/10.1038/s41598-017-03994-1.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4