A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-018-02142-8 below:

Applications of Wireless Power Transfer in Medicine: State-of-the-Art Reviews

  • Agbinya, J. I. Wireless Power Transfer, Vol. 45. Gistrup: River Publishers, 2015.

    Google Scholar 

  • Baillie, J. Gastrointestinal Endoscopy: Basic Principles and Practice. Oxford: Butterworth-Heinemann, 1992.

    Google Scholar 

  • Berdat, P., et al. Short-and long-term mechanical cardiac assistance. Int. J. Artif. Organs 24(5):263–273, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Campi, T., et al. Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans. Microw. Theory Tech. 64(2):633–642, 2016.

    Article  Google Scholar 

  • CEPT, U., Electromagnetic compatibility and radio spectrum matters (ERM); radio frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W; Part 1: Technical requirements and methods of measurement [Internet], 2005.

  • Cobo, A., et al. Characterization of a wireless implantable infusion micropump for small animal research under simulated in vivo conditions. In: Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE, 2014.

  • de Franchis, R., et al. ICCE consensus for bowel preparation and prokinetics. Endoscopy 37(10):1040–1045, 2005.

    Article  PubMed  Google Scholar 

  • Directive, H. A. T. Council Directive 90/385/EEC of 20 June 1990 on the approximation of the laws of the Member States relating to active implantable medical devices. Off. J. L 189(20/07):0017–0036, 1990.

    Google Scholar 

  • Dissanayake, T. D., et al. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep. Artif. Organs 34(5):E160–E167, 2010.

    Article  PubMed  Google Scholar 

  • Fang, X., et al. Wireless power transfer system for capsule endoscopy based on strongly coupled magnetic resonance theory. In: 2011 International Conference on Mechatronics and Automation (ICMA), 2011.

  • Feng, L., Y. Mao, and Y. Cheng. An efficient and stable power management circuit with high output energy for wireless powering capsule endoscopy. In: Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian, IEEE, 2011.

  • Fuyuno, I. Olympus finds market rival hard to swallow. Nature 438(7070):913, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, S., R. Lau, and C. Gabriel. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11):2271, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Gay-Balmaz, P., and O. J. Martin. Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92(5):2929–2936, 2002.

    Article  CAS  Google Scholar 

  • Ghovanloo, M., and K. Najafi. Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE J. Solid-State Circuits 39(11):1976–1984, 2004.

    Article  Google Scholar 

  • Google Scholar. https://scholar.google.com/.

  • Grantome. 2018. http://grantome.com/search?q=Bradford+Wood.

  • Ha, S., et al. Silicon-integrated high-density electrocortical interfaces. Proc. IEEE 105(1):11–33, 2017.

    Article  CAS  Google Scholar 

  • Ho, J. S., et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 111(22):7974–7979, 2014.

    Article  CAS  PubMed  Google Scholar 

  • IEEE Xplore. http://ieeexplore.ieee.org/Xplore/home.jsp.

  • International Commission on Non-Ionizing Radiation Protection. ICNIRP statement on the “guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz)”. Health Phys. 97(3):257–258, 2009.

    Article  CAS  Google Scholar 

  • Karalis, A., J. D. Joannopoulos, and M. Soljačić. Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323(1):34–48, 2008.

    Article  CAS  Google Scholar 

  • Karumbaiah, L., et al. Relationship between intracortical electrode design and chronic recording function. Biomaterials 34(33):8061–8074, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. -D., C. Sun, and I. -S. Suh. A proposal on wireless power transfer for medical implantable applications based on reviews. In: Wireless Power Transfer Conference (WPTC), 2014 IEEE, 2014.

  • Kim, L., S. C. Tang, and S. -S. Yoo. Prototype modular capsule robots for capsule endoscopies. In: 2013 13th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2013.

  • Kim, C., et al. Design of miniaturized wireless power receivers for mm-sized implants. In: Custom Integrated Circuits Conference (CICC), 2017 IEEE, 2017.

  • Kornbluth, A., et al. ICCE consensus for inflammatory bowel disease. Endoscopy 37(10):1051–1054, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kurs, A., et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834):83–86, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., et al. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2(4):81, 2005.

    Article  PubMed  Google Scholar 

  • Lee, S. B., et al. An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4(6):360–371, 2010.

    Article  PubMed Central  Google Scholar 

  • Lee, S.-Y., et al. A programmable implantable microstimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans. Biomed. Circuits Syst. 5(6):511–522, 2011.

    Article  Google Scholar 

  • Lenaerts, B., and R. Puers. An inductive power link for a wireless endoscope. Biosens. Bioelectron. 22(7):1390–1395, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., and R. Bashirullah. A wireless power interface for rechargeable battery operated medical implants. IEEE Trans. Circuits Syst. II Express Briefs 54(10):912–916, 2007.

    Article  Google Scholar 

  • Liu, X., et al. Wireless power transfer system design for implanted and worn devices. In: Bioengineering Conference, 2009 IEEE 35th Annual Northeast, IEEE, 2009.

  • Maisel, W. H. Improving the security and privacy of implantable medical devices. N Engl. J. Med. 362(13):1164, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Mark, M. Powering mm-size Wireless Implants for Brain-Machine Interfaces. Berkeley: University of California, 2011.

    Google Scholar 

  • McConnell, G. C., et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 6(5):056003, 2009.

    Article  PubMed  Google Scholar 

  • Monti, G., P. Arcuti, and L. Tarricone. Resonant inductive link for remote powering of pacemakers. IEEE Trans. Microw. Theory Tech. 63(11):3814–3822, 2015.

    Article  Google Scholar 

  • Monti, G., et al. Wireless power link for rechargeable pacemakers. In: 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017.

  • Muller, R., et al. A minimally invasive 64-channel wireless μECoG implant. IEEE J. Solid-State Circuits 50(1):344–359, 2015.

    Article  Google Scholar 

  • O’Driscoll, S., A. S. Poon, and T. H. Meng. A mm-sized implantable power receiver with adaptive link compensation. In: Solid-State Circuits Conference-Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009.

  • Parker, K. J., R. M. Lerner, and R. C. Waag. Attenuation of ultrasound: magnitude and frequency dependence for tissue characterization. Radiology 153(3):785–788, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Polikov, V. S., P. A. Tresco, and W. M. Reichert. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1):1–18, 2005.

    Article  PubMed  Google Scholar 

  • Puers, R., R. Carta, and J. Thoné. Wireless power and data transmission strategies for next-generation capsule endoscopes. J. Micromech. Microeng. 21(5):054008, 2011.

    Article  Google Scholar 

  • Rasmussen, K. B., et al. Proximity-based access control for implantable medical devices. In: Proceedings of the 16th ACM conference on Computer and Communications Security, ACM, 2009.

  • Reitz, J. R., F. J. Milford, and R. W. Christy. Foundations of Electromagnetic Theory. Boston: Addison-Wesley Publishing Company, 2008.

    Google Scholar 

  • ScienceDirect. http://www.sciencedirect.com/.

  • Shiba, K., A. Morimasa, and H. Hirano. Design and development of low-loss transformer for powering small implantable medical devices. IEEE Trans. Biomed. Circuits Syst. 4(2):77–85, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T., et al. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. IEEE Trans. Biomed. Eng. 59(11):3247–3254, 2012.

    Article  PubMed  Google Scholar 

  • Surawicz, B., and T. Knilans. Chou’s Electrocardiography in Clinical Practice E-Book: Adult and Pediatric. London: Elsevier Health Sciences, 2008.

    Google Scholar 

  • Swain, P. Wireless capsule endoscopy. Gut 52(4):48–50, 2003.

    Google Scholar 

  • Tang, S. C. A low-operating-voltage wireless intermediate-range scheme for energy and signal transmission by magnetic coupling for implantable devices. IEEE J. Emerg. Sel. Top. Power Electron. 3(1):242–251, 2015.

    Article  Google Scholar 

  • Tang, S. C., F. A. Jolesz, and G. T. Clement. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(6):1211–1221, 2011.

    Article  PubMed  Google Scholar 

  • Tang, S. C., D. Vilkomerson, and T. Chilipka. Magnetically-powered implantable Doppler blood flow meter. In: Ultrasonics Symposium (IUS), 2014 IEEE International. 2014.

  • Tang, S. C., et al. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps. IEEE Trans. Power Electron. 32(5):3844–3857, 2017.

    Article  Google Scholar 

  • Vihvelin, H., et al. Class E RF amplifier design in an ultrasonic link for wireless power delivery to implanted medical devices. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), 2015.

  • Vilkomerson, D. and T. Chilipka. Implantable Doppler system for self-monitoring vascular grafts. In: Ultrasonics Symposium, 2004 IEEE, 2004.

  • Waters, B. H., et al. Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100(1):138–149, 2012.

    Article  Google Scholar 

  • Xin, W., G. Yan, and W. Wang. Study of a wireless power transmission system for an active capsule endoscope. Int. J. Med. Robot. Comput. Assist. Surg. 6(1):113–122, 2010.

    Google Scholar 

  • Nakamoto, H. A passive UHF RFID tag LSI with 36.6% efficiency CMOS-only rectifier and current-mode demodulator in 0.35 μm FeRAM technology. IEEE J. Solid-State Circuits 39(11):1976–1984, 2006.

    Google Scholar 

  • Yoo, J., et al. A 5.2 mW self-configured wearable body sensor network controller and a 12 μW wirelessly powered sensor for a continuous health monitoring system. IEEE J. Solid-State Circuits 45(1):178–188, 2010.

    Article  Google Scholar 

  • Zargham, M., and P. G. Gulak. Fully integrated on-chip coil in 0.13 μm CMOS for wireless power transfer through biological media. IEEE Trans. Biomed. Circuits Syst. 9(2):259–271, 2015.

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4