A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-017-1927-0 below:

Random Electromyostimulation Promotes Osteogenesis and the Mechanical Properties of Rat Bones

References
  1. Andersen-Ranberg, K., K. Christensen, B. Jeune, A. Skytthe, L. Vasegaard, and J. W. Vaupel. Declining physical abilities with age: a cross-sectional study of older twins and centenarians in Denmark. Age Ageing 28:373–377, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Brouwers, J. E. M., B. van Rietbergen, K. Ito, and R. Huiskes. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J. Orthop. Res. 28:62–69, 2010.

    PubMed  Google Scholar 

  3. Burr, D. B., R. G. Frederickson, C. Pavlinch, M. Sickles, and S. Burkart. Intracast muscle stimulation prevents bone and cartilage deterioration in cast-immobilized rabbits. Clin. Orthop. Relat. Res. 189:264–278, 1984.

    Google Scholar 

  4. Cummings, S. R., and L. J. Melton. Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767, 2002.

    Article  PubMed  Google Scholar 

  5. Drake, M. T., B. L. Clarke, and E. M. Lewiecki. The pathophysiology and treatment of osteoporosis. Clin. Ther. 37:1837–1850, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Felsenberg, D., and S. Boonen. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27:1–11, 2005.

    Article  PubMed  Google Scholar 

  7. Frost, H. M. Perspectives: the role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J. Bone Min. Res. 7:253–261, 1992.

    Article  CAS  Google Scholar 

  8. Kallinen, M., and A. Markku. Aging, physical activity and sports injuries. Sport. Med. 20:41–52, 1995.

    Article  CAS  Google Scholar 

  9. Klentrou, P. Influence of exercise and training during critical stages of bone growth and development. Pediatr. Exerc. Sci. 28:178–186, 2016.

    Article  PubMed  Google Scholar 

  10. Lam, H., and Y.-X. Qin. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone 43:1093–1100, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mastumura, H., and S. M. Tanaka. Promotion of osteobastic calcficaton by random pulse train electromagnetic fields. Japanese J. Clin. Biomech. 33:41–46, 2012.

    Google Scholar 

  12. McDonnell, P., P. E. McHugh, and D. O’Mahoney. Vertebral osteoporosis and trabecular bone quality. Ann. Biomed. Eng. 35:170–189, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Nase, J. B., and J. B. Suzuki. Osteonecrosis of the jaw and oral bisphosphonate treatment. J. Am. Dent. Assoc. 137:1115–1119, 2006.

    Article  PubMed  Google Scholar 

  14. Paschalis, E. P., E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey. Bone fragility and collagen cross-links. J. Bone Miner. Res. 19:2000–2004, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qin, Y. X., and H. Lam. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J. Biomech. 42:140–145, 2009.

    Article  PubMed  Google Scholar 

  16. Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal. Interact. 10:12–24, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin, Y. X., C. T. Rubin, and K. J. McLeod. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J. Orthop. Res. 16:482–489, 1998.

    Article  CAS  PubMed  Google Scholar 

  18. Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17:1545–1554, 2002.

    Article  PubMed  Google Scholar 

  19. Rubin, C., R. Recker, D. Cullen, J. Ryaby, J. Mccabe, and K. Mcleod. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J. Bone Min. Res. 19:343–351, 2004.

    Article  Google Scholar 

  20. Saito, M., and K. Marumo. Bone quality in diabetes. Front. Endocrinol. 4:72, 2013.

    Google Scholar 

  21. Sample, S. J., M. Behan, L. Smith, W. E. Oldenhoff, M. D. Markel, V. L. Kalscheur, Z. Hao, V. Miletic, and P. Muir. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. J. Bone Miner. Res. 23:1372–1381, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sarkar, S., J.-Y. Reginster, G. G. Crans, A. Diez-Perez, K. V. Pinette, and P. D. Delmas. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. J. Bone Miner. Res. 19:394–401, 2004.

    Article  PubMed  Google Scholar 

  23. Sugiyama, T., J. S. Price, and L. E. Lanyon. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46:314–321, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takimoto, T., and S. M. Tanaka. The use of electrical muscle stimulation to promote osteogenesis—analysis of current density distribution in bone by the finite element method. Japanese J. Clin. Biomech. 30:21–26, 2009.

    Google Scholar 

  25. Takimoto, T., and S. M. Tanaka. Noise electrical stimulation promotes alkalin phosphatase activity in regenerated bone. Japanese J. Clin. Biomech. 31:181–186, 2010.

    Google Scholar 

  26. Tanaka, S. M. Intracellular Ca2+ responses of 3D-cultured osteoblasts to dynamic loading. J. Biomech. Sci. Eng. 7:318–327, 2012.

    Article  Google Scholar 

  27. Tanaka, S. M. Effect of stimulation frequency on osteogenic capability of electrical muscle stimulation. J. Biomech. Sci. Eng. 9:14–00114, 2014.

    Article  Google Scholar 

  28. Tanaka, S. M., I. M. Alam, and C. H. Turner. Stochastic resonance in osteogenic response to mechanical loading. FASEB J. 17:313–314, 2003.

    CAS  PubMed  Google Scholar 

  29. Tanaka, S. M., and K. Kondo. Frequency and resting time dependencies of electrically-induced muscle contraction force. J. Biomech. Sci. Eng. 4:201–211, 2009.

    Article  Google Scholar 

  30. Tanaka, S. M., J. Li, R. L. Duncan, H. Yokota, D. B. Burr, and C. H. Turner. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36:73–80, 2003.

    Article  PubMed  Google Scholar 

  31. Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407, 1998.

    Article  CAS  PubMed  Google Scholar 

  32. Turner, C. H., M. R. Forwood, J. Y. Rho, and T. Yoshikawa. Mechanical loading thresholds for lamellar and woven bone formation. J. Bone Min. Res. 9:87–97, 1994.

    Article  CAS  Google Scholar 

  33. Vallbo, A. B. Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol. Scand. 90:319–336, 1974.

    Article  CAS  PubMed  Google Scholar 

  34. Weber, J. F., and S. D. Waldman. Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation. J. Orthop. Res. 34:231–239, 2015.

    Article  PubMed  Google Scholar 

  35. Yorozuya, Y., J. Sakamoto, and S. M. Tanaka. Osteogenic effect of electrical muscle stimulation—Verification of the effect by finite element analysis of bone strain. Japanese J. Clin. Biomech. 34:71–76, 2013.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4