Al-Roubaie, S., E. D. Jahnsen, M. Mohammed, C. Henderson-Toth, and E. A. Jones. Rheology of embryonic avian blood. Am. J. Physiol. Heart Circ. Physiol. 301(6):H2473–2481, 2011.
Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008.
Bharadwaj, K. N., C. Spitz, A. Shekhar, H. C. Yalcin, and J. T. Butcher. Computational fluid dynamics of developing avian outflow tract heart valves. Ann. Biomed. Eng. 40(10):2212–2227, 2012.
Butcher, J. T., D. Sedmera, R. E. Guldberg, and R. R. Markwald. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev. Dyn. 236(3):802–809, 2007.
Dodson, R. B., P. J. Rozance, E. Reina-Romo, V. L. Ferguson, and K. S. Hunter. Hyperelastic remodeling in the intrauterine growth restricted (IUGR) carotid artery in the near-term fetus. J. Biomech. 46(5):956–963, 2013.
Goenezen, S., V. K. Chivukula, M. Midgett, L. Phan, and S. Rugonyi. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics. Biomech. Model. Mechanobiol. 15(3):723–743, 2016.
Gregg, C. L., and J. T. Butcher. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation. 84(1):149–162, 2012.
Hoffman, J. I. E., and S. Kaplan. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39(12):1890–1900, 2002.
Holmes, W. M., C. McCabe, J. M. Mullin, B. Condon, and M. M. Bain. Noninvasive self-gated magnetic resonance cardiac imaging of developing chick embryos in Ovo. Circulation 117(21):e346–e347, 2008.
Hu, N., D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anat. Rec. (Hoboken) 292(5):652–660, 2009.
Lai, C. Q., G. L. Lim, M. Jamil, C. N. Z. Mattar, A. Biswas, and C. H. Yap. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans. Biomech. Model. Mechanobiol. 15(5):1159–1172, 2015.
Liu, A., X. Yin, L. Shi, et al. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS ONE 7(7):e40869, 2012.
Molina, C. E., J. Heijman, and D. Dobrev. Differences in left versus right ventricular electrophysiological properties in cardiac dysfunction and arrhythmogenesis. Arrhythm. Electrophysiol. Rev. 5(1):14, 2016.
Olesen, S.-P., D. Claphamt, and P. Davies. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331(6152):168–170, 1988.
Perona, P., and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):629–639, 1990.
Reddy, U. M., R. A. Filly, and J. A. Copel. Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstet. Gynecol. 112(1):145–157, 2008.
Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009.
Shi, L., S. Goenezen, S. Haller, M. T. Hinds, K. L. Thornburg, and S. Rugonyi. Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos. Am. J. Physiol. Heart Circ. Physiol. 305(3):H386–H396, 2013.
Taber, L. A. Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3(1):1–25, 2001.
Tan, G. X. Y., M. Jamil, N. G. Z. Tee, L. Zhong, and C. H. Yap. 3D reconstruction of chick embryo vascular geometries using non-invasive high-frequency ultrasound for computational fluid dynamics studies. Ann. Biomed. Eng. 43:2780–2793, 2015.
Tobita, K., and B. B. Keller. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. 279(3):H959, 2000.
Tobita, K., and B. B. Keller. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. Heart Circ. Physiol. 279(3):H959–H969, 2000.
Vasudevan, V., A. J. J. Low, S. P. Annamalai, et al. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction. Biomech. Model. Mechanobiol. 2017. doi:10.1007/s10237-017-0902-x.
Wang, Y., O. Dur, M. J. Patrick, et al. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann. Biomed. Eng. 37(6):1069–1081, 2009.
Wiputra, H., C. Q. Lai, G. L. Lim, et al. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans. Am. J. Physiol. 311(6):H1498, 2016.
Wiputra, H., G. L. Lim, D. A. K. Chia, C. N. Z. Mattar, A. Biswas, and C. H. Yap. Methods for fluid dynamics simulations of human fetal cardiac chambers based on patient-specific 4D ultrasound scans. J. Biomech. Sci. Eng. 11:1500608, 2016.
Yelbuz, T. M., M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt. Optical coherence tomography a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation 106(22):2771–2774, 2002.
Zhang, Z., D. Alpert, R. Francis, et al. Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy. Proc. Natl. Acad. Sci. 106(9):3219–3224, 2009.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4