A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-017-1882-9 below:

Organ Dynamics and Fluid Dynamics of the HH25 Chick Embryonic Cardiac Ventricle as Revealed by a Novel 4D High-Frequency Ultrasound Imaging Technique and Computational Flow Simulations

References
  1. Al-Roubaie, S., E. D. Jahnsen, M. Mohammed, C. Henderson-Toth, and E. A. Jones. Rheology of embryonic avian blood. Am. J. Physiol. Heart Circ. Physiol. 301(6):H2473–2481, 2011.

    Article  CAS  PubMed  Google Scholar 

  2. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008.

    Article  PubMed  Google Scholar 

  3. Bharadwaj, K. N., C. Spitz, A. Shekhar, H. C. Yalcin, and J. T. Butcher. Computational fluid dynamics of developing avian outflow tract heart valves. Ann. Biomed. Eng. 40(10):2212–2227, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Butcher, J. T., D. Sedmera, R. E. Guldberg, and R. R. Markwald. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev. Dyn. 236(3):802–809, 2007.

    Article  PubMed  Google Scholar 

  5. Dodson, R. B., P. J. Rozance, E. Reina-Romo, V. L. Ferguson, and K. S. Hunter. Hyperelastic remodeling in the intrauterine growth restricted (IUGR) carotid artery in the near-term fetus. J. Biomech. 46(5):956–963, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goenezen, S., V. K. Chivukula, M. Midgett, L. Phan, and S. Rugonyi. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics. Biomech. Model. Mechanobiol. 15(3):723–743, 2016.

    Article  PubMed  Google Scholar 

  7. Gregg, C. L., and J. T. Butcher. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation. 84(1):149–162, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoffman, J. I. E., and S. Kaplan. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39(12):1890–1900, 2002.

    Article  PubMed  Google Scholar 

  9. Holmes, W. M., C. McCabe, J. M. Mullin, B. Condon, and M. M. Bain. Noninvasive self-gated magnetic resonance cardiac imaging of developing chick embryos in Ovo. Circulation 117(21):e346–e347, 2008.

    Article  PubMed  Google Scholar 

  10. Hu, N., D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark, and J. A. Hawkins. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anat. Rec. (Hoboken) 292(5):652–660, 2009.

    Article  Google Scholar 

  11. Lai, C. Q., G. L. Lim, M. Jamil, C. N. Z. Mattar, A. Biswas, and C. H. Yap. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans. Biomech. Model. Mechanobiol. 15(5):1159–1172, 2015.

    Article  PubMed  Google Scholar 

  12. Liu, A., X. Yin, L. Shi, et al. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS ONE 7(7):e40869, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molina, C. E., J. Heijman, and D. Dobrev. Differences in left versus right ventricular electrophysiological properties in cardiac dysfunction and arrhythmogenesis. Arrhythm. Electrophysiol. Rev. 5(1):14, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Olesen, S.-P., D. Claphamt, and P. Davies. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331(6152):168–170, 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Perona, P., and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7):629–639, 1990.

    Article  Google Scholar 

  16. Reddy, U. M., R. A. Filly, and J. A. Copel. Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstet. Gynecol. 112(1):145–157, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009.

    Article  PubMed  Google Scholar 

  18. Shi, L., S. Goenezen, S. Haller, M. T. Hinds, K. L. Thornburg, and S. Rugonyi. Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos. Am. J. Physiol. Heart Circ. Physiol. 305(3):H386–H396, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taber, L. A. Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3(1):1–25, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Tan, G. X. Y., M. Jamil, N. G. Z. Tee, L. Zhong, and C. H. Yap. 3D reconstruction of chick embryo vascular geometries using non-invasive high-frequency ultrasound for computational fluid dynamics studies. Ann. Biomed. Eng. 43:2780–2793, 2015.

    Article  PubMed  Google Scholar 

  21. Tobita, K., and B. B. Keller. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. 279(3):H959, 2000.

    CAS  Google Scholar 

  22. Tobita, K., and B. B. Keller. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. Heart Circ. Physiol. 279(3):H959–H969, 2000.

    CAS  PubMed  Google Scholar 

  23. Vasudevan, V., A. J. J. Low, S. P. Annamalai, et al. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction. Biomech. Model. Mechanobiol. 2017. doi:10.1007/s10237-017-0902-x.

    PubMed  Google Scholar 

  24. Wang, Y., O. Dur, M. J. Patrick, et al. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann. Biomed. Eng. 37(6):1069–1081, 2009.

    Article  PubMed  Google Scholar 

  25. Wiputra, H., C. Q. Lai, G. L. Lim, et al. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans. Am. J. Physiol. 311(6):H1498, 2016.

    Google Scholar 

  26. Wiputra, H., G. L. Lim, D. A. K. Chia, C. N. Z. Mattar, A. Biswas, and C. H. Yap. Methods for fluid dynamics simulations of human fetal cardiac chambers based on patient-specific 4D ultrasound scans. J. Biomech. Sci. Eng. 11:1500608, 2016.

    Article  Google Scholar 

  27. Yelbuz, T. M., M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt. Optical coherence tomography a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation 106(22):2771–2774, 2002.

    Article  PubMed  Google Scholar 

  28. Zhang, Z., D. Alpert, R. Francis, et al. Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy. Proc. Natl. Acad. Sci. 106(9):3219–3224, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4