A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-017-1869-6 below:

Direct Quantification of Solute Diffusivity in Agarose and Articular Cartilage Using Correlation Spectroscopy

Abstract

Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. Abbreviations
10k dextran:

AlexaFluor® 488-conjugated 10 kilodalton dextran

3k dextran:

AlexaFluor® 488-conjugated 3 kilodalton dextran

α :

Anomalous diffusion exponent

D :

Diffusion coefficient (time invariant parameter)

FCS:

Fluorescence correlation spectroscopy

FRAP:

Fluorescence recovery after photobleaching

Γ :

Transport coefficient (time invariant parameter)

ICS:

Image correlation spectroscopy

LSCM:

Laser scanning confocal microscopy

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

PSF:

Point spread function

RICS:

Raster image correlation spectroscopy

ROI:

Region of interest

ω 0 :

Radial waist dimension of the microscope point spread function

ω z :

Axial waist dimension of the microscope point spread function

References
  1. Allhands, R. V., P. A. Torzilli, and F. A. Kallfelz. Measurement of diffusion of uncharged molecules in articular cartilage. Cornell Vet 74:111–123, 1984.

    CAS  PubMed  Google Scholar 

  2. Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382–8395, 1998.

    Article  CAS  Google Scholar 

  3. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42:1163–1176, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Banks, D. S., and C. Fradin. Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 89:2960–2971, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477–486, 1998.

    CAS  PubMed  Google Scholar 

  6. Burstein, D., M. L. Gray, A. L. Hartman, R. Gipe, and B. D. Foy. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11:465–478, 1993.

    Article  CAS  PubMed  Google Scholar 

  7. Chahine, N. O., M. B. Albro, E. G. Lima, V. I. Wei, C. R. Dubois, C. T. Hung, and G. A. Ateshian. Effect of dynamic loading on the transport of solutes into agarose hydrogels. Biophys. J. 97:968–975, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Culbertson, C. T., S. C. Jacobson, and J. Michael. Ramsey. Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–373, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Digman, M. A., and E. Gratton. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 2011. doi:10.1146/annurev-physchem-032210-103424.

    PubMed  PubMed Central  Google Scholar 

  10. Digman, M. A., P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton. Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys. J. 88:L33–L36, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dobrucki, J. W., D. Feret, and A. Noatynska. Scattering of exciting light by live cells in fluorescence confocal imaging: phototoxic effects and relevance for FRAP studies. Biophys. J. 93:1778–1786, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elson, E. L., and D. Magde. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27, 1974.

    Article  CAS  Google Scholar 

  13. Fischer, A. E., T. A. Carpenter, J. A. Tyler, and L. D. Hall. Visualisation of mass transport of small organic molecules and metal ions through articular cartilage by magnetic resonance imaging. Magn. Reson. Imaging 13:819–826, 1995.

    Article  CAS  PubMed  Google Scholar 

  14. Gardiner, B. S., D. Smith, P. Pivonka, A. Grodzinsky, E. Frank, and L. Zhang. Solute transport in cartilage undergoing cyclic deformation. Comput. Methods Biomech. Biomed. Eng. 10:265–278, 2007.

    Article  Google Scholar 

  15. Holmes, D. L., and N. C. Stellwagen. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis 12:612–619, 1991.

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, A. R., and W. Gu. Transport properties of cartilaginous tissues. Curr. Rheumatol. Rev. 5:40, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones, C. W., D. Smolinski, C. Willers, P. J. Yates, A. Keogh, D. Fick, T. B. Kirk, and M. H. Zheng. Laser scanning confocal arthroscopy of a fresh cadavericknee joint. Osteoarthr. Cartil. 15:1388–1396, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Krichevsky, O., and G. Bonnet. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 2002. doi:10.1088/0034-4885/65/2/203.

    Google Scholar 

  19. Leddy, H. A., H. A. Awad, and F. Guilak. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J. Biomed. Mater. Res. Part B Appl. Biomater. 70:397–406, 2004.

    Article  PubMed  Google Scholar 

  20. Leddy, H. A., and F. Guilak. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31:753–760, 2003.

    Article  PubMed  Google Scholar 

  21. Leddy, H. A., and F. Guilak. Site-specific effects of compression on macromolecular diffusion in articular cartilage. Biophys. J. 95:4890–4895, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leddy, H. A., F. Guilak, and S. E. Christensen. Microscale diffusion properties of the cartilage pericellular matrix measured using 3D scanning microphotolysis. J. Biomech. Eng. 130:061002, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leddy, H. A., M. A. Haider, and F. Guilak. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91:311–316, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. I., M. Sato, K. Ushida, and J. Mochida. Measurement of diffusion in articular cartilage using fluorescence correlation spectroscopy. BMC Biotechnology 11(1):19, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Magde, D., E. L. Elson, and W. W. Webb. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61, 1974.

    Article  CAS  PubMed  Google Scholar 

  26. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Meder, R., S. K. de Visser, J. C. Bowden, T. Bostrom, and J. M. Pope. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthr. Cartil. 14:875–881, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Moore, A. C., and D. L. Burris. Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered jointkinematics hypothesis of osteoarthritis. Osteoarthr. Cartil. 23:161–169, 2015.

    Article  CAS  PubMed  Google Scholar 

  29. Mow, V. C., A. Ratcliffe, and A. R. Poole. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97, 1992.

    Article  CAS  PubMed  Google Scholar 

  30. Müller, P., P. Schwille, and T. Weidemann. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30:2532–2533, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pluen, A., P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77:542–552, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quinn, T. M., P. Kocian, and J. J. Meister. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384:327–334, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Rennerfeldt, D. A., A. N. Renth, Z. Talata, S. H. Gehrke, and M. S. Detamore. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 34:8241–8257, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rüttinger, S., V. Buschmann, B. Krämer, R. Erdmann, R. Macdonald, and F. Koberling. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J. Microsc. 232:343–352, 2008.

    Article  PubMed  Google Scholar 

  35. Soumpasis, D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41:95–97, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Torzilli, P. A., J. M. Arduino, J. D. Gregory, and M. Bansal. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30:895–902, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Ukai, T., M. Sato, T. Yamashita, Y. Imai, G. Mitani, T. Takagaki, K. Serigano, and J. Mochida. Diffusion tensor imaging can detect the early stages of cartilage damage: a comparison study. BMC Musculoskelet. Disord. 16:35, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vendelin, M., and R. Birkedal. Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am. J. Physiol. Cell Physiol. 295:C1302–C1315, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xia, Y., T. Farquhar, N. Burton-Wurster, M. Vernier-Singer, G. Lust, and L. W. Jelinski. Self-diffusion monitors degraded cartilage. Arch. Biochem. Biophys. 323:323–328, 1995.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research reported herein was supported by the NIH under Award Number R21AR062738. Microscopy equipment was acquired through NIH shared instrumentation grants (S10 RR0272773 & S10 OD016361) and access was supported by NIGMS (P20 GM103446). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We thank Dr. Jeffrey Caplan and Michael Moore in the Delaware Biotechnology Institute Bio-Imaging Center for their technical assistance, as well as Ms. Alison Wright for assisting in the analysis of our correlation spectroscopy data.

Conflict of interest

The authors report no conflicts of interest with the submitted work.

Author information Authors and Affiliations
  1. Biomechanics & Movement Science, University of Delaware, Newark, DE, USA

    Janty S. Shoga & Christopher Price

  2. Department of Mechanical Engineering, University of Delaware, Newark, DE, USA

    Brian T. Graham, Liyun Wang & Christopher Price

  3. Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA

    Christopher Price

Authors
  1. Janty S. Shoga
  2. Brian T. Graham
  3. Liyun Wang
  4. Christopher Price
Contributions

All authors have read and approved the final submission of the manuscript. The contributions of the authors are described below: Study Design – JS, CP. Acquisition of Data – JS, BG. Analysis and Interpretation – JS, BG, LW, CP. Manuscript Preparation – JS, BG, LW, CP. Statistical Analysis – JS, CP.

Corresponding author

Correspondence to Christopher Price.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

About this article Cite this article

Shoga, J.S., Graham, B.T., Wang, L. et al. Direct Quantification of Solute Diffusivity in Agarose and Articular Cartilage Using Correlation Spectroscopy. Ann Biomed Eng 45, 2461–2474 (2017). https://doi.org/10.1007/s10439-017-1869-6

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4