A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-017-1845-1 below:

Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal

References
  1. Augustin, G., T. Zigman, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, and S. Babic. Cortical bone drilling and thermal osteonecrosis. Clin. Biomech. (Bristol, Avon) 27:313–325, 2012.

    Article  Google Scholar 

  2. Bell, B., C. Stieger, N. Gerber, M. Caversaccio, and S. Weber. A self-developed and constructer robot for minimally invasive cochlear implantation. Acta otolaryngol. 132:355–360, 2012.

    Article  PubMed  Google Scholar 

  3. Bertollo, N., and W. R. Walsh. Drilling of bone: practicality, limitations and complications associated with surgical drill-bits. In: Biomechanics in Applications, edited by V. Klika. InTech, 2011. doi:10.5772/20931.

  4. Chen, H. L., and A. A. Gundjian. Specific heat of bone. Med. Biol. Eng. 14:548–550, 1976.

    Article  CAS  PubMed  Google Scholar 

  5. Davidson, S. R., and D. F. James. Measurement of thermal conductivity of bovine cortical bone. Med. Eng. Phys. 22:741–747, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Eriksson, R., and T. Albrektsson. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J. Oral Maxillofac. Surg. 42:705–711, 1984.

    Article  CAS  PubMed  Google Scholar 

  7. Feldmann, A., J. Anso, B. Bell, T. Williamson, K. Gavaghan, N. Gerber, H. Rohrbach, and P. Zysset. Temperature prediction model for bone drilling based on density distribution and in vivo experiments for minimally invasive robotic cochlear implantation. Ann. Biomed. Eng. 44:1576–1586, 2015.

    Article  PubMed  Google Scholar 

  8. Feldmann, A., J. Wandel, and P. Zysset. Reducing temperature elevation of robotic bone drilling. Med. Eng. Phys. 38: 1495–1504, 2016.

    Article  PubMed  Google Scholar 

  9. Feldmann, A., and P. Zysset. Experimental determination of the emissivity of bone. Med. Eng. Phys. 38:1136–1138, 2016.

    Article  PubMed  Google Scholar 

  10. Gulya, A. J., and H. Schuknecht. Anatomy of the Temporal Bone with Surgical Implications, 3rd edition. Washington, DC: Informa Healthcare, 2007.

    Book  Google Scholar 

  11. Havemann, J., J. van der Zee, and J. Wondergems. Effects of hyperthermia on the peripheral nervous system: a review. Int. J. Hyperth. 20:371–391, 2004.

    Article  Google Scholar 

  12. Klocke, F., and W. König. Fertigungsverfahren 1 - Drehen, Fräsen, Bohren, 8th edition. Aachen: Springer, RWTH Aachen, 2008.

  13. Labadie, R. F., R. Balachandran, J. H. Noble, G. S. Blachon, J. E. Mitchell, F. A. Reda, B. M. Dawant, and J. M. Fitzpatrick. Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. Laryngoscope 124:1–8, 2014.

    Article  Google Scholar 

  14. Lee, J., B. A. Gozen, and O. B. Ozdoganlar. Modeling and experimentation of bone drilling forces. J. Biomech. 45:1076–1083, 2011.

    Article  Google Scholar 

  15. Lee, J., Y. Rabin, and O. B. Ozdoganlar. A new thermal model for bone drilling with applications to orthopaedic surgery. Med. Eng. Phys. 33:1234–1244, 2011.

    Article  PubMed  Google Scholar 

  16. Lughmani, W., K. Bouazza-Marouf, and I. Ashcroft. Drilling in cortical bone: a finite element model and experimental investigations. J. Mech. Behav. Biomed. Mater. 42:32–42, 2015.

    Article  PubMed  Google Scholar 

  17. Maani, N., K. Farhang, and M. Hodaei. A model for the prediction of thermal response of bone in surgical drilling. J. Therm. Sci. Eng. Appl. 6:1–17, 2014.

    Article  Google Scholar 

  18. Marco, M., M. Rodriguez-Millan, C. Santiuste, E. Giner, and M. H. Miguelez. A review on recent advances in numerical modelling of bone cutting. J. Mech. Behav. Biomed. Mater. 44:179–201, 2015.

    Article  PubMed  Google Scholar 

  19. Nagao, T., and Y. Hatamura. Investigation into drilling laminated printed circuit board using a torque–thrust–temperature sensor. Ann. CIRP 37:79–82, 1988.

    Article  Google Scholar 

  20. Paek, U., and F. Gagliano. Thermal analysis of laser drilling process. IEEE J. Quantum Electron. 8:112–119, 1972.

    Article  Google Scholar 

  21. Pandey, R. K., and S. Panda. Drilling of bone: a comprehensive review. J. Clin. Orthop. Trauma 4:15–30, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sapareto, S. A., and W. C. Dewey. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10:787–800, 1984.

    Article  CAS  PubMed  Google Scholar 

  23. Sezek, S., B. Aksakal, and F. Karaca. Influence of drill parameters on bone temperature and necrosis: a FEM modelling and in vitro experiments. Comput. Mater. Sci. 60:13–18, 2012.

    Article  Google Scholar 

  24. Sui, J., N. Sugita, K. Ishii, K. Harada, and M. Mitsuishi. Mechanistic modeling of bone-drilling process with experimental validation. J. Mater. Process. Technol. 214:1018–1026, 2013.

    Article  Google Scholar 

  25. Tai, B., A. Palmisano, B. Belmont, T. Irwin, J. Holmes, and A. Shih; Numerical evaluation of sequential bone drilling strategies based on thermal damage; Medical Engineering and Physics; 37:885–861; 2015.

    Article  Google Scholar 

  26. Trisi, P., and G. Perfetti. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep. Clin. Oral Implants Res. 25:696–701, 2014.

    Article  PubMed  Google Scholar 

  27. Tu, Y.-K., W.-H. Lu, L.-W. Chen, J.-S. Ciou, and Y.-C. Chen. The effects of drilling parameters on bone temperatures: a finite element simulation. In: 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, pp. 1–4.

  28. de Vrind, H. H., J. Wondergem, and H. de Vrind. Hyperthermia-induced damage to rat sciatic nerve assessed in vivo with functional methods and with electrophysiology. J. Neurosci. Methods 45:165–174, 1992.

    Article  PubMed  Google Scholar 

  29. Williamson, T. M., B. J. Bell, N. Gerber, L. Salas, P. Zysset, M. Caversaccio, and S. Weber. Estimation of tool pose based on force–density correlation during robotic drilling. IEEE Trans. Biomed. Eng. 60:969–976, 2013.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4