Agcaoglu, S., and O. Akkus. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone. J. Biomech. Eng. 135:81005, 2013.
Aggelis, D. G., M. Strantza, O. Louis, F. Boulpaep, D. Polyzos, and D. van Hemelrijck. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors (Switzerland) 15:5803–5819, 2015.
Allsop, D. L., C. Y. Warner, M. G. Wille, D. C. Schneider, and A. M. Nahum. Facial impact response—a comparison of the {Hybrid} {III} dummy and human cadaver. SAE Pap. No.881719, Proc. 32th Stapp Car Crash Conf. 781–797, 1988. doi:10.4271/881719.
Arun, M. W. J., N. Yoganandan, B. D. Stemper, and F. A. Pintar. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests. J. Mech. Behav. Biomed. Mater. 40:156–160, 2014.
Breuer, L., J. Dammers, T. P. L. Roberts, and N. J. Shah. A constrained ICA approach for real-time cardiac artifact rejection in magnetoencephalography. IEEE Trans. Biomed. Eng. 61:405–414, 2014.
Buehler, M. J. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1:59–67, 2008.
Cormier, J., S. Manoogian, J. Bisplinghoff, C. McNally, and S. Duma. The use of acoustic emission in facial fracture detection. Biomed. Sci. Instrum. 44:147–152, 2008.
Cormier, J., S. Manoogian, J. Bisplinghoff, S. Rowson, A. Santago, C. McNally, S. Duma, and J. Bolte. The tolerance of the frontal bone to blunt impact. J. Biomech. Eng. 133:21004, 2011.
Denis, F. The three columns of the spine and its significance in the classification of acute thoracolumbar spine injuries. Spine (Phila. Pa. 1976). 8:817–831, 1983.
Donnelly, E., R. M. Williams, S. A. Downs, M. E. Dickinson, S. P. Baker, and M. C. H. van der Meulen. Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. J. Mater. Res. 21:2106–2117, 2006.
Fischer, R. A., S. W. Arms, M. H. Pope, and D. Seligson. Analysis of the effect of using two different strain rates on the acoustic emission in bone. J. Biomech. 19:119–127, 1986.
Funk, J. R., J. R. Crandall, L. J. Tourret, C. B. MacMahon, C. R. Bass, J. T. Patrie, N. Khaewpong, and R. H. Eppinger. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension. J. Biomech. Eng. 124:750–757, 2002.
Funk, J. R., J. R. Kerrigan, and J. R. Crandall. Dynamic bending tolerance and elastic-plastic material properties of the human femur. Annu. Proc. Assoc. Adv. Automot. Med. 48:215–233, 2004.
Gautieri, A., M. J. Buehler, and A. Redaelli. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J. Mech. Behav. Biomed. Mater. 2:130–137, 2009.
Gibson, P. C., M. P. Lamoureux, and G. F. Margrave. Letter to the editor: stockwell and wavelet transforms. J. Fourier Anal. Appl. 12:713–721, 2006.
Goff, M. G., C. R. Slyfield, S. R. Kummari, E. V. Tkachenko, S. E. Fischer, Y. H. Yi, M. G. Jekir, T. M. Keaveny, and C. J. Hernandez. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone. Bone 51:28–37, 2012.
Goodyear, B. G., H. Zhu, R. A. Brown, and J. R. Mitchell. Removal of phase artifacts from fMRI data using a stockwell transform filter improves brain activity detection. Magn. Reson. Med. 51:16–21, 2004.
Hasegawa, K., H. E. Takahashi, Y. Koga, T. Kawashima, T. Hara, Y. Tanabe, and S. Tanaka. Mechanical properties of osteopenic vertebral bodies monitored by acoustic emission. Bone 14:737–743, 1993.
Kent, R., S. Stacey, and C. Parenteau. Dynamic pinch tolerance of the phalanges and interphalangeal joints. Traffic Inj. Prev. 9:83–88, 2008.
Liu, X. S., E. M. Stein, B. Zhou, C. A. Zhang, T. L. Nickolas, A. Cohen, V. Thomas, D. J. McMahon, F. Cosman, J. Nieves, E. Shane, and X. E. Guo. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J. Bone Miner. Res. 27:263–272, 2012.
Magerl, F., M. Aebi, S. D. Gertzbein, J. Harms, and S. Nazarian. A comprehensive classification of thoracic and lumbar injuries. Eur. Spine J. 3:184–201, 1994.
Mauch, M., J. D. Currey, and A. J. Sedman. Creep fracture in bones with different stiffnesses. J. Biomech. 25:11–16, 1992.
McCormack, T., E. Karaikovic, and R. W. Gaines. The load sharing classification of spine fractures. Spine (Phila. Pa. 1976) 19:1741–1744, 1994.
McKay, B. J., and C. A. Bir. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 53:229–249, 2009.
Newitt, D. C., S. Majumdar, B. Van Rietbergen, G. Von Ingersleben, S. T. Harris, H. K. Genant, C. Chesnut, P. Garnero, and B. MacDonald. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos. Int. 13:6–17, 2002.
Ni, Q. Q., and M. Iwamoto. Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 69:717–728, 2002.
Ohno, K., and M. Ohtsu. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 24:2339–2346, 2010.
Oth, A., S. Parolai, and D. Bindi. Spectral analysis of K-NET and KiK-net data in Japan, Part I: Database compilation and peculiarities. Bull. Seismol. Soc. Am. 101(2):652–666, 2011. doi:10.1785/0120100134.
Pinnegar, C. R., and L. Mansinha. The S-transform with windows of arbitrary and varying shape. Geophysics 68:381, 2003.
R Core Team. R: A Language and Environment for Statistical Computing, Vienna, Austria, 2015. https://cran.r-project.org/doc/manuals/r-release/R-intro.html.
Ruff, C. B., and C. W. Hayes. Bone-mineral content in the lower limb. Relationship to cross-sectional geometry. J. Bone Joint Surg. Am. 66-A(7):1024–1031, 1984.
Sanders, R., P. Fortin, T. DiPasquale, and A. Walling. Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin. Orthop. Relat. Res. 1993. doi:10.1097/00003086-199305000-00012.
Shridharani, J. K., A. L. Schmidt, C. A. Cox, B. R. Bigler, A. E. Knight, R. Cameron, and D. Bass. Dynamic Failure Localization in Spinal Specimens using Acoustic Emissions. In: IRCOBI Conference 2014, Berlin, Germany, pp. 166–175, 2014. http://www.ircobi.org/wordpress/downloads/irc14/default.htm.
Slyfield, C. R., E. V. Tkachenko, S. E. Fischer, K. M. Ehlert, I. H. Yi, M. G. Jekir, R. G. O’Brien, T. M. Keaveny, and C. J. Hernandez. Mechanical failure begins preferentially near resorption cavities in human vertebral cancellous bone under compression. Bone 50:1281–1287, 2012.
Stockwell, R. G. A basis for efficient representation of the S-transform. Digit. Signal Process. 17:371–393, 2007.
Stockwell, R. G. Why use the S-transform? Pseudo Differ. Oper. Partial Differ. Equ. Time-Freq. Anal. 52:279–309, 2007.
Stockwell, R. G., L. Mansinha, and R. P. Lowe. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 44:998–1001, 1996.
Szabo, T. L., and J. Wu. A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107:2437–2446, 2000.
Trebacz, H., and A. Zdunek. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization. J. Biomech. 39:237–245, 2006.
Van Toen, C., J. Street, T. R. Oxland, and P. A. Cripton. Acoustic emission signals can discriminate between compressive bone fractures and tensile ligament injuries in the spine during dynamic loading. J. Biomech. 45:1643–1649, 2012.
Wang, J., B. Zhou, X. S. Liu, A. J. Fields, A. Sanyal, X. Shi, M. Adams, T. M. Keaveny, and X. E. Guo. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 72:71–80, 2015.
Wang, M. C., F. Pintar, N. A. Yoganandan, and D. J. Maiman. The continued burden of spine fractures after motor vehicle crashes. J. Neurosurg. Spine 10:86–92, 2009.
Whang, P. G., and A. R. Vaccaro. Thoracolumbar spine fractures and dislocations. In: Fractures in Adults, edited by R. W. Bucholz, C. M. Court-Brown, J. D. Heckman, and P. I. Tornetta. Philadelphia: Lippincott Williams & Wilkins, 2010, pp. 1377–1411.
Zioupos, P., J. D. Currey, and A. J. Sedman. An examination of the micromechanics of failure of bone and antler by acoustic emission tests and Laser Scanning Confocal Microscopy. Med. Eng. Phys. 16:203–212, 1994.
Zwipp, H., H. Tscherne, H. Thermann, and T. Weber. Osteosynthesis of displaced intraarticular fractures of the calcaneus. Results in 123 cases. Clin. Orthop. Relat. Res. 290:76–86, 1993.
S9225 Miniature Sensor: Product Data Sheet. Physical Acoustics; Mistras Group, 2011. http://www.physicalacoustics.com/by-product/sensors/S9225-300-1800-kHz-Lightweight-Miniature-AE-Sensor-with-Integral-Coaxial-Cable.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4