Alfonso, F., R. A. Byrne, F. Rivero, and A. Kastrati. Current treatment of in-stent restenosis. J. Am. Coll. Cardiol. 63:2659–2673, 2014.
Barrett, H. E., E. M. Cunnane, E. G. Kavanagh, and M. T. Walsh. On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue. J. Mech. Behav. Biomed. Mater. 56:45–56, 2016.
Boland, E. L., J. A. Grogan, C. Conway, and P. E. McHugh. Computer simulation of the mechanical behaviour of implanted biodegradable stents in a remodelling artery. Jom 68:1198–1203, 2016.
Chen, H. Y., B.-K. Koo, D. L. Bhatt, and G. S. Kassab. Impact of stent mis-sizing and mis-positioning on coronary fluid wall shear and intramural stress. J. Appl. Physiol. 115:285–292, 2013.
Chen, H. Y., A. K. Sinha, J. S. Choy, H. Zheng, M. Sturek, B. Bigelow, D. L. Bhatt, and G. S. Kassab. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. AJP Heart. Circ. Physiol. 301:H2254–H2263, 2011.
Chiastra, C., W. Wu, B. Dickerhoff, A. Aleiou, G. Dubini, H. Otake, F. Migliavacca, and J. F. LaDisa. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses. J. Biomech. 49:2102–2111, 2015.
Cho, H., M. Nango, Y. Sakai, E. Sohgawa, K. Kageyama, S. Hamamoto, T. Kitayama, A. Yamamoto, and Y. Miki. Neointimal hyperplasia after stent placement across size-discrepant vessels in an animal study. Jpn. J. Radiol. 32:340–346, 2014.
Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 42:2425–2439, 2014.
Conway, C., F. Sharif, J. P. McGarry, and P. E. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:374–387, 2012.
Cunnane, E. M., H. E. Barrett, E. G. Kavanagh, R. Mongrain, and M. T. Walsh. The influence of composition and location on the toughness of human atherosclerotic femoral plaque tissue. Acta Biomater. 31:264–275, 2016.
Cunnane, E. M., J. J. Mulvihill, H. E. Barrett, D. A. Healy, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of human atherosclerotic femoral plaque tissue. Acta Biomater. 11:295–303, 2015.
Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, M. M. Hennessy, E. G. Kavanagh, and M. T. Walsh. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: a comparative study. J. Biomech. 49:3697–3704, 2016.
Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, and M. T. Walsh. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results. Biomed. Eng. Online 14:S7, 2015.
Derksen, W. J. M., J. P. P. M. De Vries, A. Vink, E. Velema, J. A. Vos, D. De Kleijn, F. L. Moll, and G. Pasterkamp. Histologic atherosclerotic plaque characteristics are associated with restenosis rates after endarterectomy of the common and superficial femoral arteries. J. Vasc. Surg. 52:592–599, 2010.
Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, and L. Petrini. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.
Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.
Gökgöl, C., N. Diehm, F. R. Nezami, and P. Büchler. Nitinol stent oversizing in patients undergoing popliteal artery revascularization: a finite element study. Ann. Biomed. Eng. 43:2868–2880, 2015.
Gornik, H. L., and J. A. Beckman. Cardiology patient page. Peripheral arterial disease. Circulation 111:e169–e172, 2005.
Herisson, F., M. F. Heymann, M. Chétiveaux, C. Charrier, S. Battaglia, P. Pilet, T. Rouillon, M. Krempf, P. Lemarchand, D. Heymann, and Y. Gouëffic. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 216:348–354, 2011.
Hoffmann, R., G. S. Mintz, J. J. Popma, L. F. Satler, A. D. Pichard, K. M. Kent, C. Walsh, P. Mackell, and M. B. Leon. Chronic arterial responses to stent implantation: a serial intravascular ultrasound analysis of Palmaz-Schatz stents in native coronary arteries. J. Am. Coll. Cardiol. 28:1134–1139, 1996.
Holzapfel, G. A., J. Casey, and G. Bao. Mechanics of angioplasty: wall, balloon and stent. Mech. Biol. ASME 242:141–156, 2000.
Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.
Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.
Holzapfel, G. A., M. Stadler, and C. A. J. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.
Kirsch, E. C., M. S. Khangure, P. Morling, T. J. York, and W. Mcauliffe. Oversizing of self-expanding stents : influence on the development of neointimal hyperplasia of the carotid artery in a canine model. Am. J. Neuroradiol. 23:121–127, 2002.
LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98:947–957, 2005.
Li, F., M. M. McDermott, D. Li, T. J. Carroll, D. S. Hippe, C. M. Kramer, Z. Fan, X. Zhao, T. S. Hatsukami, B. Chu, J. Wang, and C. Yuan. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J. Cardiovasc. Magn. Reson. 12:37, 2010.
Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.
Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational modelling of in vitro set-ups for peripheral self-expanding Nitinol stents: the importance of stent-wall interaction in the assessment of the fatigue resistance. Cardiovasc. Eng. Technol. 4:474–484, 2013.
Migliavacca, F., L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, and G. Dubini. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217, 2004.
Moreno, P. R., K. R. Purushothaman, V. Fuster, and W. N. O’Connor. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation 105:2504–2511, 2002.
Mulvihill, J. J., E. M. Cunnane, S. M. McHugh, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Acta Biomater. 9:9027–9035, 2013.
Norgren, L., W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45:S5–S67, 2007.
Petrini, L., A. Trotta, E. Dordoni, F. Migliavacca, G. Dubini, P. V. Lawford, J. N. Gosai, D. M. Ryan, D. Testi, and G. Pennati. A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1472-7.
Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of Nitinol for peripheral stents. Funct. Mater. Lett. 05:1250012, 2012.
Piamsomboon, C., G. S. Roubin, M. W. Liu, S. S. Iyer, A. Mathur, L. S. Dean, C. R. Gomez, J. J. Vitek, N. Chattipakorn, and G. Yates. Relationship between oversizing of self-expanding stents and late loss index in carotid stenting. Cathet. Cardiovasc. Diagn. 143:139–143, 1998.
Rebelo, N., R. Fu, and M. Lawrenchuk. Study of a Nitinol stent deployed into anatomically accurate artery geometry and subjected to realistic service loading. J. Mater. Eng. Perform. 18:655–663, 2009.
Saguner, A. M., T. Traupe, L. Räber, N. Hess, Y. Banz, A. R. Saguner, N. Diehm, and O. M. Hess. Oversizing and restenosis with self-expanding stents in iliofemoral arteries. Cardiovasc. Intervent. Radiol. 35:906–913, 2012.
Schulze-bauer, C. A. J., P. Regitnig, and G. A. Holzapfel. Mechanics of the human femoral adventitia including the high-pressure response. Am. J. Physiol. Hear. Circ. Physiol. 282:2427–2440, 2002.
Smilde, T. J., F. W. van den Berkmortel, G. H. Boers, H. Wollersheim, T. de Boo, H. van Langen, and f Stalenhoef. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia. Arterioscler. Thromb. Vasc. Biol. 18:1958–1963, 1998.
Stary, H. C., D. Blankenhorn, A. B. Chandler, S. Glagov, W. Insull, M. E. Rosenfeld, S. Schaffer, C. J. Schwartz, and W. D. Wagner. A definition of the intima of human arteries and of its atherosclerosis-prone regions. Circulation 85:391–405, 1992.
Stiegler, H., and R. Brandl. Importance of ultrasound for diagnosing periphereal arterial disease. Ultraschall Med. 30:334–374, 2009.
Stoeckel, D., A. Pelton, and T. Duerig. Self-expanding Nitinol stents: material and design considerations. Eur. Radiol. 14:292–301, 2004.
Tai, N. R., A. Giudiceandrea, H. J. Salacinski, A. M. Seifalian, and G. Hamilton. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg. 30:936–945, 1999.
Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011.
Zeller, T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 12:223–234, 2007.
Zhao, H. Q., A. Nikanorov, R. Virmani, R. Jones, E. Pacheco, and L. B. Schwartz. Late stent expansion and neointimal proliferation of oversized Nitinol stents in peripheral arteries. Cardiovasc. Intervent. Radiol. 32:720–726, 2009.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4