A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-017-1799-3 below:

Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis

References
  1. Anas, E. M., A. Rasoulian, A. Seitel, K. Darras, D. Wilson, P. S. John, D. Pichora, P. Mousavi, R. Rohling, and P. Abolmaesumi. Automatic segmentation of wrist bones in CT using a statistical wrist shape + pose model. IEEE Trans. Med. Imaging 35:1789–1801, 2016.

    Article  PubMed  Google Scholar 

  2. Athertya, J. S., and G. Saravana Kumar. Automatic segmentation of vertebral contours from CT images using fuzzy corners. Comput. Biol. Med. 72:75–89, 2016.

    Article  PubMed  Google Scholar 

  3. Avants, B. B., C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12:26–41, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Baiker, M., J. Milles, J. Dijkstra, T. D. Henning, A. W. Weber, I. Que, E. L. Kaijzel, C. W. Lowik, J. H. Reiber, and B. P. Lelieveldt. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Med. Image Anal. 14:723–737, 2010.

    Article  PubMed  Google Scholar 

  5. Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Muller. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25:1468–1486, 2010.

    Article  PubMed  Google Scholar 

  6. Buie, H. R., G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515, 2007.

    Article  PubMed  Google Scholar 

  7. Christiansen, B. A. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone Rep. 5:136–140, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Christiansen, B. A., M. J. Anderson, C. A. Lee, J. C. Williams, J. H. Yik, and D. R. Haudenschild. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr. cartil. 20:773–782, 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Chu, C., J. Bai, X. Wu, and G. Zheng. MASCG: multi-atlas segmentation constrained graph method for accurate segmentation of hip CT images. Med. Image Anal. 26:173–184, 2015.

    Article  PubMed  Google Scholar 

  10. Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30:1323–1341, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Flors, L., J. P. Mugler, III, E. E. de Lange, G. W. Miller, J. F. Mata, N. Tustison, I. C. Ruset, F. W. Hersman, and T. A. Altes. Hyperpolarized gas magnetic resonance lung imaging in children and young adults. J. Thorac. Imaging 31:285–295, 2016.

    Article  PubMed  Google Scholar 

  12. Gassman, E. E., S. M. Powell, N. A. Kallemeyn, N. A. Devries, K. H. Shivanna, V. A. Magnotta, A. J. Ramme, B. D. Adams, and N. M. Grosland. Automated bony region identification using artificial neural networks: reliability and validation measurements. Skeletal Radiol. 37:313–319, 2008.

    Article  PubMed  Google Scholar 

  13. Hojjat, S. P., M. R. Hardisty, and C. M. Whyne. Micro-computed tomography-based highly automated 3D segmentation of the rat spine for quantitative analysis of metastatic disease. J. Neurosurg. Spine 13:367–370, 2010.

    Article  PubMed  Google Scholar 

  14. Huang, J., F. Jian, H. Wu, and H. Li. An improved level set method for vertebra CT image segmentation. Biomed. Eng. Online 12:48, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson, H., and G. Harris. BRAINSFit: Mutual Information Rigid Registrations of Whole-Brain 3D Images, Using the Insight Toolkit. The Insight Journal, pp. 1–11, 2008.

  16. Kandel, B. M., B. B. Avants, J. C. Gee, C. T. McMillan, G. Erus, J. Doshi, C. Davatzikos, and D. A. Wolk. White matter hyperintensities are more highly associated with preclinical Alzheimer’s disease than imaging and cognitive markers of neurodegeneration. Alzheimer’s Dementia ((Amsterdam, Netherlands)) 4:18–27, 2016.

    Google Scholar 

  17. Landis, J. R., and G. G. Koch. The measurement of observer agreement for categorical data. Biometrics 33:159–174, 1977.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, B., H. Zhang, S. Hua, Q. Jiang, R. Huang, W. Liu, S. Zhang, B. Zhang, and Z. Yue. An automatic segmentation system of acetabulum in sequential CT images for the personalized artificial femoral head design. Comput. Methods Programs Biomed. 127:318–335, 2016.

    Article  PubMed  Google Scholar 

  19. Maerz, T., M. Kurdziel, M. D. Newton, P. Altman, K. Anderson, H. W. Matthew, and K. C. Baker. Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic osteoarthritis. Osteoarthr. Cartil. 24:698–708, 2016.

    Article  CAS  PubMed  Google Scholar 

  20. Ramme, A. J., A. J. Criswell, B. R. Wolf, V. A. Magnotta, and N. M. Grosland. EM segmentation of the distal femur and proximal tibia: a high-throughput approach to anatomic surface generation. Ann. Biomed. Eng. 39:1555–1562, 2011.

    Article  PubMed  Google Scholar 

  21. Ramme, A. J., N. DeVries, N. A. Kallemyn, V. A. Magnotta, and N. M. Grosland. Semi-automated phalanx bone segmentation using the expectation maximization algorithm. J. Digit. Imaging 22:483–491, 2009.

    Article  PubMed  Google Scholar 

  22. Ramme, A. J., M. Lendhey, J. G. Raya, T. Kirsch, and O. D. Kennedy. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis. Osteoarthr. Cartil. 24:1776–1785, 2016.

    Article  CAS  PubMed  Google Scholar 

  23. Shrout, P. E., and J. L. Fleiss. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86:420–428, 1979.

    Article  CAS  PubMed  Google Scholar 

  24. Tassani, S., V. Korfiatis, and G. K. Matsopoulos. Influence of segmentation on micro-CT images of trabecular bone. J. Microsc. 256:75–81, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Tustison, N. J., P. A. Cook, A. Klein, G. Song, S. R. Das, J. T. Duda, B. M. Kandel, N. van Strien, J. R. Stone, J. C. Gee, and B. B. Avants. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. NeuroImage. 99:166–179, 2014.

    Article  PubMed  Google Scholar 

  26. Tustison, N. J., K. Qing, C. Wang, T. A. Altes, and J. P. Mugler, 3rd. Atlas-based estimation of lung and lobar anatomy in proton MRI. Magn. Reson. Med. 76:315–320, 2016.

    Article  PubMed  Google Scholar 

  27. Tustison, N. J., and J. C. Gee. Introducing Dice, Jaccard, and Other Label Overlap Measures to ITK. The Insight Journal, 2009.

  28. Waarsing, J. H., J. S. Day, and H. Weinans. An improved segmentation method for in vivo microCT imaging. J. Bone Miner. Res. 19:1640–1650, 2004.

    Article  PubMed  Google Scholar 

  29. Wang, D. J., X. Bi, B. B. Avants, T. Meng, S. Zuehlsdorff, and J. A. Detre. Estimation of perfusion and arterial transit time in myocardium using free-breathing myocardial arterial spin labeling with navigator-echo. Magn. Reson. Med. 64:1289–1295, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xi, T., R. Schreurs, W. J. Heerink, S. J. Berge, and T. J. Maal. A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (CBCT). PLoS ONE 9:e111126, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yoder, J. H., J. M. Peloquin, G. Song, N. J. Tustison, S. M. Moon, A. C. Wright, E. J. Vresilovic, J. C. Gee, and D. M. Elliott. Internal three-dimensional strains in human intervertebral discs under axial compression quantified noninvasively by magnetic resonance imaging and image registration. J. Biomech. Eng. 136:111008, 2014.

    Article  Google Scholar 

  32. Zhang, J., C. H. Yan, C. K. Chui, and S. H. Ong. Fast segmentation of bone in CT images using 3D adaptive thresholding. Comput. Biol. Med. 40:231–236, 2010.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, F., J. Liang, D. Chen, C. Wang, X. Yang, X. Chen, and F. Cao. Automatic segmentation method for bone and blood vessel in murine hindlimb. Med. Phys. 42:4043–4054, 2015.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4