Arcaute, K., B. K. Mann, and R. B. Wicker. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34:1429–1441, 2006.
Barry, R. A., R. F. Shepherd, J. N. Hanson, R. G. Nuzzo, P. Wiltzius, and J. A. Lewis. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21:2407–2410, 2009.
Benam, K. H., S. Dauth, B. Hassell, A. Herland, A. Jain, K.-J. Jang, K. Karalis, H. J. Kim, L. MacQueen, and R. Mahmoodian. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 10:195–262, 2015.
Billiet, T., M. Vandenhaute, J. Schelfhout, S. V. Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.
Boland, T., X. Xu, B. Damon, and X. Cui. Application of inkjet printing to tissue engineering. Biotechnol. J. 1:910–917, 2006.
Breitenkamp, M. G., M. Finn, and D. D. Lotz. D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 18:1304–1312, 2012.
Chang, C. C., E. D. Boland, S. K. Williams, and J. B. Hoying. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J. Biomed. Mater. Res. B. Appl. Biomater. 98:160–170, 2011.
Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. A. 14:41–48, 2008.
De Gans, B. J., and U. S. Schubert. Inkjet printing of well-defined polymer dots and arrays. Langmuir 20:7789–7793, 2004.
Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.
Dhariwala, B., E. Hunt, and T. Boland. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10:1316–1322, 2004.
Do, A. V., B. Khorsand, S. N. Geary, and A. K. Salem. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4(12):1742–1762, 2015.
Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A. 101:1255–1264, 2013.
Fedorovich, N. E., J. Alblas, J. R. de Wijn, W. E. Hennink, A. J. Verbout, and W. J. Dhert. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 13:1905–1925, 2007.
Fedorovich, N. E., W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. Weeren, J. Malda, J. Alblas, and W. J. Dhert. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. C. 18:33–44, 2011.
Fujisato, T., T. Sajiki, Q. Liu, and Y. Ikada. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold. Biomaterials. 17:155–162, 1996.
Gaetani, R., P. A. Doevendans, C. H. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. Sluijter. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 33:1782–1790, 2012.
Gaetani, R., D. A. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. Doevendans, and J. P. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 61:339–348, 2015.
Gerecht, S., J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, and G. Vunjak-Novakovic. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:11298–11303, 2007.
Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29:183–190, 2011.
Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Rémy, L. Bordenave, J. Amédée, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 21:7250–7256, 2010.
Hashimdeen, S. H., M. Miodownik, and M. J. Edirisinghe. The Design and construction of an electrohydrodynamic cartesian robot for the preparation of tissue engineering constructs. PLOS One 9:e1121166, 2014.
Hockaday, L., K. Kang, N. Colangelo, P. Cheung, B. Duan, E. Malone, J. Wu, L. Girardi, L. Bonassar, and H. Lipson. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005, 2012.
Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.
Jang, J., T. G. Kim, B. S. Kim, S.-W. Kim, S.-M. Kwon, and D. W. Cho. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 33:88–95, 2016.
Jung, J. W., H. Lee, J. M. Hong, J. H. Park, J. H. Shim, T. H. Choi, and D.-W. Cho. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Biofabrication 7:045003, 2015.
Jung, J. W., J. H. Park, J. M. Hong, H. Y. Kang, and D. W. Cho. Octahedron pore architecture to enhance flexibility of nasal implant-shaped scaffold for rhinoplasty. Int. J. Precis. Eng. Manuf. 15:2611–2616, 2014.
Kang, H. Y., and D. W. Cho. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng. 18:719–729, 2012.
Kang, H. Y., J. H. Park, T. Y. Kang, Y. J. Seol, and D. W. Cho. Unit cell-based computer-aided manufacturing system for tissue engineering. Biofabrication 4:015005, 2012.
Khalil, S., J. Nam, and W. Sun. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp. J. 11:9–17, 2005.
Kim, S., and B.-S. Kim. Control of adult stem cell behavior with biomaterials. Tissue Eng. Regen. Med. 11:423–430, 2014.
Kim, D. H., J. T. Martin, D. M. Elliott, L. J. Smith, and R. L. Mauck. Phenotypic stability, matrix elaboration and functional maturation of nucleus pulposus cells encapsulated in photocrosslinkable hyaluronic acid hydrogels. Acta Biomater. 12:21–29, 2015.
Kim, J. Y., E. K. Park, S. Y. Kim, J. W. Shin, and D. W. Cho. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering. J. Micromech. Microeng. 18:055027, 2008.
King, S. M., S. C. Presnell, and D. G. Nguyen. Development of 3D bioprinted human breast cancer for in vitro drug screening. Cancer Res. 74:2034, 2014.
Knowlton, S., S. Onal, C. H. Yu, J. J. Zhao, and S. Tasoglu. Bioprinting for cancer research. Trends Biotechnol. 33:504–513, 2015.
Kolesky, D. B., R. L. Truby, A. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26:3124–3130, 2014.
Kundu, J., J. H. Shim, J. Jang, S. W. Kim, and D. W. Cho. An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 9:1286–1297, 2013.
Labbaf, S., H. Ghanbar, E. Stride, and M. Edirisinghe. Preparation of multilayered polymeric structures using a novel four-needle coaxial electrohydrodynamic device. Macromol. Rapid Commun. 35:618–623, 2014.
Lee, J. W. 3D nanoprinting technologies for tissue engineering applications. J. Nanomater. 2015:213521, 2015.
Lee, J. S., H. D. Cha, J. H. Shim, J. W. Jung, J. Y. Kim, and D. W. Cho. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication based scaffold for bone tissue engineering. J. Biomed. Mater. Res. A 100A:1846–1853, 2012.
Lee, I. H., and D. W. Cho. An investigation on photopolymer solidification considering laser irradiation energy in micro-stereolithography. Microsyst. Technol. 10:592–598, 2004.
Lee, W., J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park, and S. S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.
Lee, J. S., J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh, and D. W. Cho. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6:024103, 2014.
Lee, S.-H., A. R. Jo, G. P. Choi, C. H. Woo, S. J. Lee, B.-S. Kim, H.-K. You, and Y.-S. Cho. Fabrication of 3D alginate scaffold with interconnected pores using wire-network molding technique. Tissue Eng. Regen. Med. 10:53–59, 2013.
Lee, J. W., K. S. Kang, S. H. Lee, J. Y. Kim, B. K. Lee, and D. W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752, 2011.
Lee, K. Y., and D. J. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101:1869–1880, 2001.
Lu, Y., G. Mapili, G. Suhali, S. C. Chen, and K. Roy. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77:396–405, 2006.
Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA 107:15211–15216, 2010.
Madry, H., A. Rey-Rico, J. K. Venkatesan, B. Johnstone, and M. Cucchiarini. Transforming growth factor beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng. Part B: Rev. 20:106–125, 2013.
Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.
Markstedt, K., A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 16:1489–1496, 2015.
Matsuura, K., R. Utoh, K. Nagase, and T. Okano. Cell sheet approach for tissue engineering and regenerative medicine. J. Control Release 190:228–239, 2014.
Melchels, F. P., M. A. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polymer Sci. 37:1079–1104, 2012.
Melchels, F. P., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.
Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, and X. Yu. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.
Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.
Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.
Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.
Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. de Ferranti, J.-P. Despres, H. J. Fullerton, and V. J. Howard. Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation 131:e29, 2015.
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
Nahmias, Y., R. E. Schwartz, C. M. Verfaillie, and D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 92:129–136, 2005.
Nakamura, M., S. Iwanaga, C. Henmi, K. Arai, and Y. Nishiyama. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2:014110, 2010.
Nakamura, M., A. K. Kobawashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 11:1658–1666, 2005.
Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.
Odde, D. J., and M. J. Renn. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 17:385–389, 1999.
Park, J. H., J. M. Hong, Y. M. Ju, J. W. Jung, H. Y. Kang, S. J. Lee, J. J. Yoo, S. W. Kim, S. H. Kim, and D. W. Cho. A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials 62:106–115, 2015.
Park, J. H., J. Jang, and D. W. Cho. Three-dimensional printed 3D structure for tissue engineering. Trans. Korean. Soc. Mech. Eng. 38:817–829, 2014.
Park, J. H., J. W. Jung, H. Y. Kang, Y. H. Joo, J. S. Lee, and D. W. Cho. Development of a 3D bellows tracheal graft: mechanical behavior analysis, fabrication and an in vivo feasibility study. Biofabrication 4:035004, 2012.
Park, J. K., J. H. Shim, K. S. Kang, J. Yeom, H. S. Jung, J. Y. Kim, K. H. Lee, T. H. Kim, S. Y. Kim, and D. W. Cho. Solid free-form fabrication of tissue-engineering scaffolds with a poly (lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein-2/poly (ethylene glycol) complex. Adv. Funct. Mater. c21:2906–2912, 2011.
Park, H., J. S. Temenoff, Y. Tabata, A. I. Caplan, and A. G. Mikos. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28:3217–3227, 2007.
Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.
Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014. doi:10.1038/ncomms4935
Pati, F., T.-H. Song, G. Rijal, J. Jang, S. W. Kim, and D.-W. Cho. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 37:230–241, 2015.
Ringeisen, B. R., H. Kim, J. A. Barron, D. B. Krizman, D. B. Chrisey, S. Jackman, R. Auyeung, and B. J. Spargo. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 10:483–491, 2004.
Seok, J., H. S. Warren, A. G. Cuenca, M. N. Mindrinos, H. V. Baker, W. Xu, D. R. Richards, G. P. McDonald-Smith, H. Gao, and L. Hennessy. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110:3507–3512, 2013.
Seol, Y. J., T. Y. Kang, and D. W. Cho. Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 8:1730–1735, 2012.
Seol, Y. J., H. Y. Kang, S. J. Lee, A. Atala, and J. J. Yoo. Bioprinting technology and its applications. Eur. J. Cardiothorac. Surg. 46(3):342–348, 2014.
Shanjani, Y., C. C. Pan, L. Elomaa, and Y. Yang. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7:045008, 2015.
Shim, J.-H., J.-B. Huh, J. Y. Park, Y.-C. Jeon, S. S. Kang, J. Y. Kim, J.-W. Rhie, and D.-W. Cho. Fabrication of blended polycaprolactone/poly (lactic-co-glycolic acid)/β-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Eng. Part A. 19:317–328, 2012.
Shim, J. H., J. Y. Kim, M. Park, J. Park, and D. W. Cho. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3:034102, 2011.
Shim, J. H., J. S. Lee, J. Y. Kim, and D. W. Cho. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 22:085014, 2012.
Singh, S., I. O. Afara, A. H. Tehrani, and A. Oloyede. Effect of decellularization on the load-bearing characteristics of articular cartilage matrix. Tissue Eng. Regen. Med. 12:294–305, 2015.
Smith, C. M., A. L. Stone, R. L. Parkhill, R. L. Stewart, M. W. Simpkins, A. M. Kachurin, W. L. Warren, and S. K. Williams. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 10:1566–1576, 2004.
Sohn, Y. S., J. W. Jung, J. Y. Kim, and D. W. Cho. Investigation of bi-pore scaffold based on the cell behaviors on 3D scaffold patterns. Tissue Eng. Regen. Med. 8:66–72, 2011.
Song, B. R., S. S. Yang, H. Jin, S. H. Lee, D. Y. Park, J. H. Lee, S. R. Park, S.-H. Park and B.-H. Min. Three dimensional plotted extracellular matrix scaffolds using a rapid prototyping for tissue engineering applications. Tissue Eng. Regen. Med. 12:172–180, 2015.
Spiller, K. L., Y. Liu, J. L. Holloway, S. A. Maher, Y. Cao, W. Liu, G. Zhou, and A. M. Lowman. A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: controlled release for cartilage tissue engineering. J. Control Release 157:39–45, 2012.
Spotnitz, W. D. Commercial fibrin sealants in surgical care. Am. J. Surg. 182:S8–S14, 2001.
Tabata, Y., and Y. Ikada. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 31:287–301, 1998.
Visser, J., B. Peters, T. J. Burger, J. Boomstra, W. J. Dhert, F. P. Melchels, and J. Malda. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:035007, 2013.
Wang, Z., R. Abdulla, B. Parker, R. Samanipour, S. Ghosh, and K. Kim. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:045009, 2015.
Wei, C., and J. Dong. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting. J. Micromech. Microeng. 23:025017, 2013.
Wu, W., A. DeConinck, and J. A. Lewis. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23:H178–H183, 2011.
Xiong, Q., K. L. Hill, Q. Li, P. Suntharalingam, A. Mansoor, X. Wang, M. N. Jameel, P. Zhang, C. Swingen, and D. S. Kaufman. A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells. 29:367–375, 2011.
Ye, L., W.-H. Zimmermann, D. J. Garry, and J. Zhang. Patching the heart cardiac repair from within and outside. Circ. Res. 113:922–932, 2013.
Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:354–362, 2004.
Zhang, Y., Y. Yu, and I. T. Ozbolat. Direct bioprinting of vessel-like tubular microfluidic channels. J. Nanotechnol. Eng. Med. 4:020902, 2013.
Zhao, Y., R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, and W. Sun. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 6:035001, 2014.
Zimmermann, W.-H., I. Melnychenko, G. Wasmeier, M. Didié, H. Naito, U. Nixdorff, A. Hess, L. Budinsky, K. Brune, and B. Michaelis. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12:452–458, 2006.
Zorlutuna, P., J. H. Jeong, H. Kong, and R. Bashir. Tissue engineering: stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv. Funct. Mater. 21:3597, 2011.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4