Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science (80-) 271:933–937, 1996.
Arosio, P., T. Müller, L. Mahadevan, and T. P. J. Knowles. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. Nano Lett. 14:2365–2371, 2014.
Bhushan, B. Springer Handbook of Nanotechnology. Springer, 2010. https://books.google.com/books?hl=en&lr=&id=me1grr_pobMC&pgis=1.
Blinka, E., K. Loeffler, Y. Hu, A. Gopal, K. Hoshino, K. Lin, X. Liu, M. Ferrari, and J. X. J. Zhang. Enhanced microcontact printing of proteins on nanoporous silica surface. Nanotechnology 21:415302, 2010.
Bohunicky, B., and S. A. Mousa. Biosensors: the new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 4:1–10, 2010.
Burger, R., P. Reith, G. Kijanka, V. Akujobi, P. Abgrall, and J. Ducrée. Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform. Lab Chip 12:1289–1295, 2012.
Cao, Y. C., R. Jin, and C. A. Mirkin. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540, 2002.
Chen, G. D., C. J. Alberts, W. Rodriguez, and M. Toner. Concentration and purification of human immunodeficiency virus type 1 virions by microfluidic separation of superparamagnetic nanoparticles. Anal. Chem. 82:723–728, 2010.
Chen, P., Y.-Y. Huang, K. Hoshino, and X. Zhang. On-chip magnetic field modulation for distributed immunomagnetic detection of circulating tumor cells. Solid-State Sens. 2013. doi:10.1109/Transducers.2013.6626989.
Chen, P., Y.-Y. Huang, K. Hoshino, and J. X. J. Zhang. Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells. Sci. Rep. 5:8745, 2015.
Chen, W., S. Weng, F. Zhang, S. Allen, X. Li, L. Bao, R. H. W. Lam, J. A. Macoska, S. D. Merajver, and J. Fu. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 7:566–575, 2013.
Chikkaveeraiah, B. V., V. Mani, V. Patel, J. S. Gutkind, and J. F. Rusling. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens. Bioelectron. 26:4477–4483, 2011.
Cho, B. S., T. G. Schuster, X. Zhu, D. Chang, G. D. Smith, and S. Takayama. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75:1671–1675, 2003.
Day, E. S., L. R. Bickford, J. H. Slater, N. S. Riggall, R. A. Drezek, and J. L. West. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int. J. Nanomed. 5:445–454, 2010.
Delamarche, E., D. Juncker, and H. Schmid. Microfluidics for processing surfaces and miniaturizing biological assays. Adv. Mater. 17:2911–2933, 2005.
Desai, T. A., D. J. Hansford, L. Leoni, M. Essenpreis, and M. Ferrari. Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens. Bioelectron. 15:453–462, 2000.
Di Carlo, D. Inertial microfluidics. Lab Chip 9:3038–3046, 2009.
Duncombe, T. A., and A. E. Herr. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis. Lab Chip 13:2115–2123, 2013.
Eck, W., G. Craig, A. Sigdel, G. Ritter, L. J. Old, L. Tang, M. F. Brennan, P. J. Allen, and M. D. Mason. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2:2263–2272, 2008.
Feng, P., X. Bu, and D. J. Pine. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer–cosurfactant–water systems. Langmuir 16:5304–5310, 2000.
Fu, J., R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Han. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2:121–128, 2007.
Gupta, A. K., and M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021, 2005.
Haas, F. Quantum Plasmas. New York: Springer, 2011.
Hornbeck, P. Enzyme-linked immunosorbent assays. Curr. Protoc. Immunol. Chapter 2: Unit 2.1, 2001.
Horsman, K. M., S. L. R. Barker, J. P. Ferrance, K. A. Forrest, K. A. Koen, and J. P. Landers. Separation of sperm and epithelial cells in a microfabricated device: potential application to forensic analysis of sexual assault evidence. Anal. Chem. 77:742–749, 2005.
Hosta-Rigau, L., I. Olmedo, J. Arbiol, L. J. Cruz, M. J. Kogan, and F. Albericio. Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line. Bioconjug. Chem. 21:1070–1078, 2010.
Hou, H. W., M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W.-T. Lim, J. Han, A. A. S. Bhagat, and C. T. Lim. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3:1259, 2013.
Hu, Y., A. Bouamrani, E. Tasciotti, L. Li, X. Liu, and M. Ferrari. Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein. ACS Nano 4:439–451, 2010.
Huang, N.-T., W. Chen, B.-R. Oh, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip 12:4093–4101, 2012.
Huang, L. R., E. C. Cox, R. H. Austin, and J. C. Sturm. Continuous particle separation through deterministic lateral displacement. Science 304:987–990, 2004.
Huang, Y., K. Hoshino, P. Chen, C. Wu, N. Lane, M. Huebschman, H. Liu, K. Sokolov, J. W. Uhr, E. P. Frenkel, and J. X. J. Zhang. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system. Biomed. Microdevices 15:673–681, 2013.
Huang, Y. Y., P. Chen, K. Hoshino, C. H. Wu, N. Lane, M. Huebschman, J. Uhr, K. Sokolov, E. Frenkel, and X. Zhang. Patterned nanomagnets on-chip for screening circulating tumor cells in blood. MicroTAS, 2012.
Innocenzi, P., and L. Malfatti. Mesoporous thin films: properties and applications. Chem. Soc. Rev. 42:4198–4216, 2013.
Innocenzi, P., L. Malfatti, and G. J. A. A. Soler-Illia. Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem. Mater. 23:2501–2509, 2011.
Innocenzi, P., Y. L. Zub, and V. G. Kessler. Sol-Gel Methods for Materials Processing. Dordrecht: Springer, 2008. doi:10.1007/978-1-4020-8514-7.
Jha, S. K., R. Chand, D. Han, Y.-C. Jang, G.-S. Ra, J. S. Kim, B.-H. Nahm, and Y.-S. Kim. An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Lab Chip 12:4455–4464, 2012.
Ji, J., L. Nie, L. Qiao, Y. Li, L. Guo, B. Liu, P. Yang, and H. H. Girault. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry. Lab Chip 12:2625–2629, 2012.
Kamholz, A. E., B. H. Weigl, B. A. Finlayson, and P. Yager. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. 71:5340–5347, 1999.
Kim, M., and T. Kim. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration. Analyst 138:6007–6015, 2013.
Kim, K. S., and J.-K. Park. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5:657–664, 2005.
Lagally, E. T., I. Medintz, and R. A. Mathies. Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal. Chem. 73:565–570, 2001.
Lagally, E. T., P. C. Simpson, and R. A. Mathies. Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B Chem. 63:138–146, 2000.
Lai, J. J., J. M. Hoffman, M. Ebara, A. S. Hoffman, C. Estournès, A. Wattiaux, and P. S. Stayton. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391, 2007.
Lai, G., J. Wu, H. Ju, and F. Yan. Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv. Funct. Mater. 21:2938–2943, 2011.
Laurent, S., D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108:2064–2110, 2008.
Levine, R. M., C. M. Scott, and E. Kokkoli. Peptide functionalized nanoparticles for nonviral gene delivery. Soft Matter 9:985–1004, 2013.
Li, J. Application of microfluidic devices to proteomics research: identification of trace-level protein digests and affinity capture of target peptides. Mol. Cell. Proteomics 1:157–168, 2002.
Liang, P., C.-J. Liu, R.-X. Zhuo, and S.-X. Cheng. Self-assembled inorganic/organic hybrid nanoparticles with multi-functionalized surfaces for active targeting drug delivery. J. Mater. Chem. B 1:4243, 2013.
Lion, N., F. Reymond, H. H. Girault, and J. S. Rossier. Why the move to microfluidics for protein analysis? Curr. Opin. Biotechnol. 15:31–37, 2004.
Lu, A., E. Salabas, and F. Schüth. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Chemie Int. Ed., 2007. http://onlinelibrary.wiley.com/doi/10.1002/anie.200602866/pdf.
Luo, C., Q. Fu, H. Li, L. Xu, M. Sun, Q. Ouyang, Y. Chen, and H. Ji. PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles. Lab Chip 5:726–729, 2005.
Malhotra, R., V. Patel, B. V. Chikkaveeraiah, B. S. Munge, S. C. Cheong, R. B. Zain, M. T. Abraham, D. K. Dey, J. S. Gutkind, and J. F. Rusling. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal. Chem. 84:6249–6255, 2012.
Mellors, J. S., W. A. Black, A. G. Chambers, J. A. Starkey, N. A. Lacher, and J. M. Ramsey. Hybrid capillary/microfluidic system for comprehensive online liquid chromatography-capillary electrophoresis-electrospray ionization-mass spectrometry. Anal. Chem. 85:4100–4106, 2013.
Mostert, B., S. Sleijfer, J. A. Foekens, and J. W. Gratama. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat. Rev. 35:463–474, 2009.
Mucic, R. C., J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120:12674–12675, 1998.
Nagrath, S., L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239, 2007.
Ng, E., A. Gopal, K. Hoshino, and X. Zhang. Multicolor microcontact printing of proteins on nanoporous surface for patterned immunoassay. Appl. Nanosci. 1:79–85, 2011.
Ng, E., K. Hoshino, and X. Zhang. Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface. Methods 63:266–275, 2013.
Pumera, M., J. Wang, E. Grushka, and R. Polsky. Gold nanoparticle-enhanced microchip capillary electrophoresis. Anal. Chem. 73:5625–5628, 2001.
Punnoose, E. A., S. K. Atwal, J. M. Spoerke, H. Savage, A. Pandita, R.-F. Yeh, A. Pirzkall, B. M. Fine, L. C. Amler, D. S. Chen, and M. R. Lackner. Molecular biomarker analyses using circulating tumor cells. PLoS One 5:e12517, 2010.
Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10, 2002.
Sackmann, E. K., A. L. Fulton, and D. J. Beebe. The present and future role of microfluidics in biomedical research. Nature 507:181–189, 2014.
Sharma, T., Y. Hu, M. Stoller, M. Feldman, R. S. Ruoff, M. Ferrari, and X. Zhang. Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip 11:2460–2465, 2011.
Shi, J., A. P. Fang, L. Malaquin, A. Pépin, D. Decanini, J. L. Viovy, and Y. Chen. Highly parallel mix-and-match fabrication of nanopillar arrays integrated in microfluidic channels for long DNA molecule separation. Appl. Phys. Lett. 91:153114, 2007.
Shih, S. C. C., H. Yang, M. J. Jebrail, R. Fobel, N. McIntosh, O. Y. Al-Dirbashi, P. Chakraborty, and A. R. Wheeler. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal. Chem. 84:3731–3738, 2012.
Shintaku, H., H. Nishikii, L. A. Marshall, H. Kotera, and J. G. Santiago. On-chip separation and analysis of RNA and DNA from single cells. Anal. Chem. 86:1953–1957, 2014.
Somasundaran, P. Encyclopedia of Surface and Colloid Science, Volume 1. CRC Press, 2006, https://books.google.com/books?hl=en&lr=&id=9jAHFOqyX5YC&pgis=1.
Squires, T., and S. Quake. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026, 2005.
Stott, S. L., C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber, and M. Toner. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 107:18392–18397, 2010.
Striemer, C. C., T. R. Gaborski, J. L. McGrath, and P. M. Fauchet. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445:749–753, 2007.
Strohmeier, O., A. Emperle, G. Roth, D. Mark, R. Zengerle, and F. von Stetten. Centrifugal gas-phase transition magnetophoresis (GTM)–a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification. Lab Chip 13:146–155, 2013.
Sun, W., C. Jia, T. Huang, W. Sheng, G. Li, H. Zhang, F. Jing, Q. Jin, J. Zhao, G. Li, and Z. Zhang. High-performance size-based microdevice for the detection of circulating tumor cells from peripheral blood in rectal cancer patients. PLoS One 8:e75865, 2013.
Taton, T. A. Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760, 2000.
Taylor, D. D., W. Zacharias, and C. Gercel-Taylor. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol. Biol. 728:235–246, 2011.
Théry, C., L. Zitvogel, and S. Amigorena. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2:569–579, 2002.
Tiwari, J. N., R. N. Tiwari, and K. S. Kim. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57:724–803, 2012.
Tsai, C.-P., C.-Y. Chen, Y. Hung, F.-H. Chang, and C.-Y. Mou. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem. 19:5737, 2009.
Wainright, A., U. T. Nguyen, T. Bjornson, and T. D. Boone. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices. Electrophoresis 24:3784–3792, 2003.
Wang, Z., H. Wu, D. Fine, J. Schmulen, Y. Hu, B. Godin, J. X. J. Zhang, and X. Liu. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 13:2879–2882, 2013.
Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.
Wilbur, J. L., A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides. Microcontact printing of self-assembled monolayers: applications in microfabrication. Nanotechnology 7:452–457, 1996.
Wu, C.-H., Y.-Y. Huang, P. Chen, K. Hoshino, H. Liu, E. P. Frenkel, J. X. J. Zhang, and K. V. Sokolov. Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano 7:8816–8823, 2013.
Xia, H., X. Gao, G. Gu, Z. Liu, N. Zeng, Q. Hu, Q. Song, L. Yao, Z. Pang, X. Jiang, J. Chen, and H. Chen. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 32:9888–9898, 2011.
Xia, N., T. P. Hunt, B. T. Mayers, E. Alsberg, G. M. Whitesides, R. M. Westervelt, and D. E. Ingber. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices 8:299–308, 2006.
Xu, H., Z. P. Aguilar, L. Yang, M. Kuang, H. Duan, Y. Xiong, H. Wei, and A. Wang. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32:9758–9765, 2011.
Yamada, M., K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, and T. Okano. Microfluidic devices for size-dependent separation of liver cells. Biomed. Microdevices 9:637–645, 2007.
Yamada, M., and M. Seki. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239, 2005.
Yang, W., Y. Cheng, T. Xu, X. Wang, and L.-P. Wen. Targeting cancer cells with biotin-dendrimer conjugates. Eur. J. Med. Chem. 44:862–868, 2009.
Yasui, T., N. Kaji, M. R. Mohamadi, Y. Okamoto, M. Tokeshi, Y. Horiike, and Y. Baba. Electroosmotic flow in microchannels with nanostructures. ACS Nano 5:7775–7780, 2011.
Yasui, T., N. Kaji, R. Ogawa, S. Hashioka, M. Tokeshi, Y. Horiike, and Y. Baba. Arrangement of a nanostructure array to control equilibrium and non-equilibrium transports of macromolecules. Nano Lett. 2015. doi:10.1021/acs.nanolett.5b00783.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4