A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-015-1511-4 below:

Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues

References
  1. Abou-Elkacem, L., S. Bjorn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle. High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice. Eur. Radiol. 22(9):1955–1962, 2012.

    Article  PubMed  Google Scholar 

  2. Alerstam, E., T. Svensson, and S. Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13(6):060504, 2008.

    Article  PubMed  Google Scholar 

  3. Arridge, S. R., and J. C. Schotland. Optical tomography: forward and inverse problems. Inverse Prob. 25:123010, 2009.

    Article  Google Scholar 

  4. Arridge, S. R., and M. Schweiger. Image reconstruction in optical tomography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354):717–726, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhardwaj, N., and S. C. Kundu. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3):325–347, 2010.

    Article  CAS  PubMed  Google Scholar 

  6. Bjorn, S., K. H. Englmeier, V. Ntziachristos, and R. Schulz. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography. J. Biomed. Opt. 16(4):046005, 2011.

    Article  PubMed  Google Scholar 

  7. Bjorn, S., V. Ntziachristos, and R. Schulz. Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt. Express 18(8):8422–8429, 2010.

    Article  PubMed  Google Scholar 

  8. Burgess, S. A., M. B. Bouchard, B. H. Yuan, and E. M. C. Hillman. Simultaneous multiwavelength laminar optical tomography. Opt. Lett. 33(22):2710–2712, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chartrand, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14:707–710, 2007.

    Article  Google Scholar 

  10. Chen, C. W., and Y. Chen. Optimization of design parameters for fluorescence laminar optical tomography. J. Innov. Opt. Health Sci. 4:309–323, 2011.

    Article  Google Scholar 

  11. Chen, J., Q. Fang, and X. Intes. Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography. J. Biomed. Opt. 17(10):106009, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, J., and X. Intes. Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency. Med. Phys. 38(10):5788–5798, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, J., V. Venugopal, and X. Intes. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates. Biomed. Opt. Express 2(4):871–886, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, Y., S. Yuan, J. Wierwille, R. Naphas, Q. Li, T. R. Blackwell, P. T. Winnard, Jr, V. Raman, and K. Glunde. Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT). IEEE J. Sel. Top. Quantum Electron. 16:755–766, 2010.

    Article  CAS  Google Scholar 

  15. Crilly, R. J., W. F. Cheong, B. Wilson, and J. R. Spears. Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation. Appl. Opt. 36(25):6513–6519, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. Dunn, A., and D. Boas. Transport-based image reconstruction in turbid media with small source-detector separations. Opt. Lett. 25(24):1777–1779, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Endoh, R., M. Fujii, and K. Nakayama. Depth-adaptive regularized reconstruction for reflection diffuse optical tomography. Opt. Rev. 15:51–56, 2008.

    Article  Google Scholar 

  19. Fang, Q., and D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17(22):20178–20190, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gardner, A. R., C. K. Hayakawa, and V. Venugopalan. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media. J. Biomed. Opt. 19(6):065003, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Georgakoudi, I., W. L. Rice, M. Hronik-Tupaj, and D. L. Kaplan. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B Rev 14(4):321–340, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29(4):183–190, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Hayakawa, C. K., J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett. 26(17):1335–1337, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Hillman, E. M. C., O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov. Depth-resolved optical imaging of transmural electrical propagation in perfused heart. Opt. Express 15:17827–17841, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hillman, E. M., D. A. Boas, A. M. Dale, and A. K. Dunn. Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt. Lett. 29(14):1650–1652, 2004.

    Article  PubMed  Google Scholar 

  27. Hillman, E. M. C., and S. A. Burgess. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. Laser Photonics Rev. 3(1–2):159–179, 2009.

    Article  CAS  Google Scholar 

  28. Hillman, E. M., A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35(1):89–104, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoover, E. E., and J. A. Squier. Advances in multiphoton microscopy technology. Nat. Photonics 7(2):93–101, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Intes, X., V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance. Projection access order in algebraic reconstruction technique for diffuse optical tomography. Phys. Med. Biol. 47(1):N1–N10, 2002.

    Article  PubMed  Google Scholar 

  31. Intes, X., J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance. In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med. Phys. 30(6):1039–1047, 2003.

    Article  PubMed  Google Scholar 

  32. J. Pawley, ed. Handbook of Biological Confocal Microscopy. 3rd ed. New York: Springer, 2006.

  33. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11):R37–R61, 2013.

    Article  PubMed  Google Scholar 

  34. Jaedicke, V., S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography. Biomed Opt Express 4(12):2945–2961, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Keller, J. B. Inverse problems. Am. Math. Mon. 83:107, 1976.

    Article  Google Scholar 

  36. Kobat, D., N. G. Horton, and C. Xu. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16(10):106014, 2011.

    Article  PubMed  Google Scholar 

  37. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morgner, U., W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto. Spectroscopic optical coherence tomography. Opt. Lett. 25(2):111–113, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Muldoon, T. J., S. A. Burgess, B. R. Chen, D. Ratner, and E. M. Hillman. Analysis of skin lesions using laminar optical tomography. Biomed Opt. Express 3(7):1701–1712, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  42. Ouakli, N., E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage. Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats. Opt. Express 18(10):10068–10077, 2010.

    Article  CAS  PubMed  Google Scholar 

  43. Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18(10):100501, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ozturk, M. S., D. Rohrbach, U. Sunar, and X. Intes. Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer. Acad. Radiol. 21(2):271–280, 2014.

    Article  PubMed  Google Scholar 

  45. Pian, Q., C. Wang, W. Cong, G. Wang, and X. Intes. Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues. Curr. Mol. Imaging 3:72–87, 2014.

    Article  CAS  Google Scholar 

  46. Pogue, B., T. McBride, U. Osterberg, and K. Paulsen. Comparison of imaging geometries for diffuse optical tomography of tissue. Opt. Express 4(8):270–286, 1999.

    Article  CAS  PubMed  Google Scholar 

  47. Pogue, B. W., T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen. Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 38(13):2950–2961, 1999.

    Article  CAS  PubMed  Google Scholar 

  48. Robles, F. E., C. Wilson, G. Grant, and A. Wax. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5(12):744–747, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21(32–33):3307–3329, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. So, P., H. Kim, and I. Kochevar. Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt. Express 3(9):339–350, 1998.

    Article  CAS  PubMed  Google Scholar 

  51. Suzen, M., A. Giannoula, and T. Durduran. Compressed sensing in diffuse optical tomography. Opt. Express 18(23):23676–23690, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Tan, W., A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart. Optical coherence tomography of cell dynamics in three-dimensional tissue models. Opt. Express 14(16):7159–7171, 2006.

    Article  PubMed  Google Scholar 

  53. Tan, W., A. Sendemir-Urkmez, L. J. Fahrner, R. Jamison, D. Leckband, and S. A. Boppart. Structural and functional optical imaging of three-dimensional engineered tissue development. Tissue Eng. 10(11–12):1747–1756, 2004.

    Article  PubMed  Google Scholar 

  54. Tan, W., C. Vinegoni, J. J. Norman, T. A. Desai, and S. A. Boppart. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microsc. Res. Tech. 70(4):361–371, 2007.

    Article  PubMed  Google Scholar 

  55. Tanbakuchi, A. A., A. R. Rouse, and A. F. Gmitro. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media. J. Biomed. Opt. 14(4):044024, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tay, B. C., C. Fu, B. K. Ng, J. M. Liu, S. Chou, and C. Chua. Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microw. Opt. Technol. Lett. 55:2587–2594, 2013.

    Article  Google Scholar 

  57. Thevenot, P., A. Nair, J. Dey, J. Yang, and L. Tang. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 14(4):319–331, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tikhonov, A. N., A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht: Kluwer Academic Publishers, 1995.

    Book  Google Scholar 

  59. Ueng, S. W., M. S. Lee, S. S. Lin, E. C. Chan, and S. J. Liu. Development of a biodegradable alginate carrier system for antibiotics and bone cells. J. Orthop. Res. 25(1):62–72, 2007.

    Article  CAS  PubMed  Google Scholar 

  60. Van Vlierberghe, S., P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408, 2011.

    Article  PubMed  Google Scholar 

  61. Venugopal, V., and X. Intes. Recent advances in optical mammography. Curr. Med. Imaging Rev. 8:244–259, 2012.

    Article  Google Scholar 

  62. Vroom, J. M., K. J. De Grauw, H. C. Gerritsen, D. J. Bradshaw, P. D. Marsh, G. K. Watson, J. J. Birmingham, and C. Allison. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65(8):3502–3511, 1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, L., R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, and J. E. Barralet. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481, 2003.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, L. V., and H. Wu. Biomedical Optics: Principles and Imaging. Hoboken, NJ: Wiley, 2007.

    Google Scholar 

  65. Yang, Y., A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang. Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys. Med. Biol. 51(7):1649–1659, 2006.

    Article  PubMed  Google Scholar 

  66. Yang, F., M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. IEEE Trans. Biomed. Eng. 62(1):248–255, 2015.

    Article  PubMed  Google Scholar 

  67. Yeatts, A. B., and J. P. Fisher. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng. Part C Methods 17(3):337–348, 2011.

    Article  CAS  PubMed  Google Scholar 

  68. Yeatts, A. B., C. N. Gordon, and J. P. Fisher. Formation of an aggregated alginate construct in a tubular perfusion system. Tissue Eng. Part C Methods 17(12):1171–1178, 2011.

    Article  CAS  PubMed  Google Scholar 

  69. Yodh, A., and B. Chance. Spectroscopy and imaging with diffusing light. Phys. Today 48(3):34–40, 1995.

    Article  Google Scholar 

  70. Yuan, B. H. Radiative transport in the delta-P1 approximation for laminar optical tomography. J. Innov. Opt. Health Sci. 2:149–163, 2009.

    Article  Google Scholar 

  71. Yuan, B. H., S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman. A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast. Rev. Sci. Instrum. 80(4):043706, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yuan, S., Q. Li, J. Jiang, A. Cable, and Y. Chen. Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography. Opt. Lett. 34(11):1615–1617, 2009.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33(21):5325–5332, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao, L., H. Yang, W. Cong, G. Wang, and X. Intes. L(p) regularization for early gate fluorescence molecular tomography. Opt. Lett. 39(14):4156–4159, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu, C., and Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 18(5):50902, 2013.

    Article  PubMed  Google Scholar 

  76. Zhu, W., Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour. Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14(4):799–807, 1997.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4