Abou-Elkacem, L., S. Bjorn, D. Doleschel, V. Ntziachristos, R. Schulz, R. M. Hoffman, F. Kiessling, and W. Lederle. High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice. Eur. Radiol. 22(9):1955–1962, 2012.
Alerstam, E., T. Svensson, and S. Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13(6):060504, 2008.
Arridge, S. R., and J. C. Schotland. Optical tomography: forward and inverse problems. Inverse Prob. 25:123010, 2009.
Arridge, S. R., and M. Schweiger. Image reconstruction in optical tomography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354):717–726, 1997.
Bhardwaj, N., and S. C. Kundu. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3):325–347, 2010.
Bjorn, S., K. H. Englmeier, V. Ntziachristos, and R. Schulz. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography. J. Biomed. Opt. 16(4):046005, 2011.
Bjorn, S., V. Ntziachristos, and R. Schulz. Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt. Express 18(8):8422–8429, 2010.
Burgess, S. A., M. B. Bouchard, B. H. Yuan, and E. M. C. Hillman. Simultaneous multiwavelength laminar optical tomography. Opt. Lett. 33(22):2710–2712, 2008.
Chartrand, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14:707–710, 2007.
Chen, C. W., and Y. Chen. Optimization of design parameters for fluorescence laminar optical tomography. J. Innov. Opt. Health Sci. 4:309–323, 2011.
Chen, J., Q. Fang, and X. Intes. Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography. J. Biomed. Opt. 17(10):106009, 2012.
Chen, J., and X. Intes. Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency. Med. Phys. 38(10):5788–5798, 2011.
Chen, J., V. Venugopal, and X. Intes. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates. Biomed. Opt. Express 2(4):871–886, 2011.
Chen, Y., S. Yuan, J. Wierwille, R. Naphas, Q. Li, T. R. Blackwell, P. T. Winnard, Jr, V. Raman, and K. Glunde. Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT). IEEE J. Sel. Top. Quantum Electron. 16:755–766, 2010.
Crilly, R. J., W. F. Cheong, B. Wilson, and J. R. Spears. Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation. Appl. Opt. 36(25):6513–6519, 1997.
Derby, B. Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926, 2012.
Dunn, A., and D. Boas. Transport-based image reconstruction in turbid media with small source-detector separations. Opt. Lett. 25(24):1777–1779, 2000.
Endoh, R., M. Fujii, and K. Nakayama. Depth-adaptive regularized reconstruction for reflection diffuse optical tomography. Opt. Rev. 15:51–56, 2008.
Fang, Q., and D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17(22):20178–20190, 2009.
Gardner, A. R., C. K. Hayakawa, and V. Venugopalan. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media. J. Biomed. Opt. 19(6):065003, 2014.
Georgakoudi, I., W. L. Rice, M. Hronik-Tupaj, and D. L. Kaplan. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B Rev 14(4):321–340, 2008.
Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002.
Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29(4):183–190, 2011.
Hayakawa, C. K., J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett. 26(17):1335–1337, 2001.
Hillman, E. M. C., O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov. Depth-resolved optical imaging of transmural electrical propagation in perfused heart. Opt. Express 15:17827–17841, 2007.
Hillman, E. M., D. A. Boas, A. M. Dale, and A. K. Dunn. Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt. Lett. 29(14):1650–1652, 2004.
Hillman, E. M. C., and S. A. Burgess. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. Laser Photonics Rev. 3(1–2):159–179, 2009.
Hillman, E. M., A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35(1):89–104, 2007.
Hoover, E. E., and J. A. Squier. Advances in multiphoton microscopy technology. Nat. Photonics 7(2):93–101, 2013.
Intes, X., V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance. Projection access order in algebraic reconstruction technique for diffuse optical tomography. Phys. Med. Biol. 47(1):N1–N10, 2002.
Intes, X., J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance. In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med. Phys. 30(6):1039–1047, 2003.
J. Pawley, ed. Handbook of Biological Confocal Microscopy. 3rd ed. New York: Springer, 2006.
Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11):R37–R61, 2013.
Jaedicke, V., S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography. Biomed Opt Express 4(12):2945–2961, 2013.
Keller, J. B. Inverse problems. Am. Math. Mon. 83:107, 1976.
Kobat, D., N. G. Horton, and C. Xu. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16(10):106014, 2011.
Langer, R., and J. P. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.
Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012.
Morgner, U., W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto. Spectroscopic optical coherence tomography. Opt. Lett. 25(2):111–113, 2000.
Muldoon, T. J., S. A. Burgess, B. R. Chen, D. Ratner, and E. M. Hillman. Analysis of skin lesions using laminar optical tomography. Biomed Opt. Express 3(7):1701–1712, 2012.
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.
Ouakli, N., E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage. Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats. Opt. Express 18(10):10068–10077, 2010.
Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18(10):100501, 2013.
Ozturk, M. S., D. Rohrbach, U. Sunar, and X. Intes. Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer. Acad. Radiol. 21(2):271–280, 2014.
Pian, Q., C. Wang, W. Cong, G. Wang, and X. Intes. Multimodal biomedical optical imaging review: towards comprehensive investigation of biological tissues. Curr. Mol. Imaging 3:72–87, 2014.
Pogue, B., T. McBride, U. Osterberg, and K. Paulsen. Comparison of imaging geometries for diffuse optical tomography of tissue. Opt. Express 4(8):270–286, 1999.
Pogue, B. W., T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen. Spatially variant regularization improves diffuse optical tomography. Appl. Opt. 38(13):2950–2961, 1999.
Robles, F. E., C. Wilson, G. Grant, and A. Wax. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5(12):744–747, 2011.
Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21(32–33):3307–3329, 2009.
So, P., H. Kim, and I. Kochevar. Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt. Express 3(9):339–350, 1998.
Suzen, M., A. Giannoula, and T. Durduran. Compressed sensing in diffuse optical tomography. Opt. Express 18(23):23676–23690, 2010.
Tan, W., A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart. Optical coherence tomography of cell dynamics in three-dimensional tissue models. Opt. Express 14(16):7159–7171, 2006.
Tan, W., A. Sendemir-Urkmez, L. J. Fahrner, R. Jamison, D. Leckband, and S. A. Boppart. Structural and functional optical imaging of three-dimensional engineered tissue development. Tissue Eng. 10(11–12):1747–1756, 2004.
Tan, W., C. Vinegoni, J. J. Norman, T. A. Desai, and S. A. Boppart. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microsc. Res. Tech. 70(4):361–371, 2007.
Tanbakuchi, A. A., A. R. Rouse, and A. F. Gmitro. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media. J. Biomed. Opt. 14(4):044024, 2009.
Tay, B. C., C. Fu, B. K. Ng, J. M. Liu, S. Chou, and C. Chua. Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microw. Opt. Technol. Lett. 55:2587–2594, 2013.
Thevenot, P., A. Nair, J. Dey, J. Yang, and L. Tang. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 14(4):319–331, 2008.
Tikhonov, A. N., A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht: Kluwer Academic Publishers, 1995.
Ueng, S. W., M. S. Lee, S. S. Lin, E. C. Chan, and S. J. Liu. Development of a biodegradable alginate carrier system for antibiotics and bone cells. J. Orthop. Res. 25(1):62–72, 2007.
Van Vlierberghe, S., P. Dubruel, and E. Schacht. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408, 2011.
Venugopal, V., and X. Intes. Recent advances in optical mammography. Curr. Med. Imaging Rev. 8:244–259, 2012.
Vroom, J. M., K. J. De Grauw, H. C. Gerritsen, D. J. Bradshaw, P. D. Marsh, G. K. Watson, J. J. Birmingham, and C. Allison. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65(8):3502–3511, 1999.
Wang, L., R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, and J. E. Barralet. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481, 2003.
Wang, L. V., and H. Wu. Biomedical Optics: Principles and Imaging. Hoboken, NJ: Wiley, 2007.
Yang, Y., A. Dubois, X. P. Qin, J. Li, A. El Haj, and R. K. Wang. Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys. Med. Biol. 51(7):1649–1659, 2006.
Yang, F., M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. IEEE Trans. Biomed. Eng. 62(1):248–255, 2015.
Yeatts, A. B., and J. P. Fisher. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng. Part C Methods 17(3):337–348, 2011.
Yeatts, A. B., C. N. Gordon, and J. P. Fisher. Formation of an aggregated alginate construct in a tubular perfusion system. Tissue Eng. Part C Methods 17(12):1171–1178, 2011.
Yodh, A., and B. Chance. Spectroscopy and imaging with diffusing light. Phys. Today 48(3):34–40, 1995.
Yuan, B. H. Radiative transport in the delta-P1 approximation for laminar optical tomography. J. Innov. Opt. Health Sci. 2:149–163, 2009.
Yuan, B. H., S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman. A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast. Rev. Sci. Instrum. 80(4):043706, 2009.
Yuan, S., Q. Li, J. Jiang, A. Cable, and Y. Chen. Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography. Opt. Lett. 34(11):1615–1617, 2009.
Zhao, L., V. K. Lee, S. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33(21):5325–5332, 2012.
Zhao, L., H. Yang, W. Cong, G. Wang, and X. Intes. L(p) regularization for early gate fluorescence molecular tomography. Opt. Lett. 39(14):4156–4159, 2014.
Zhu, C., and Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 18(5):50902, 2013.
Zhu, W., Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour. Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14(4):799–807, 1997.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4