Aoki, J., G. Nakazawa, K. Tanabe, A. Hoye, H. Yamamoto, T. Nakayama, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc. Interv. 15(69):380–386, 2007.
Argente dos Santos, H. A. F., F. Auricchio, and M. Conti. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity—damage model approach. J. Mech. Behav. Biomed. Mater. 15:78–92, 2012.
Auricchio, F., A. Constantinescu, M. Conti, and G. Scalet. A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. Int. J. Fatigue 75:69–79, 2015.
Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013.
Barrera, O., A. Makradi, M. Abbadi, M. Azaouzi, and S. Belouettar. On high-cycle fatigue of 316L stents. Comput. Methods Biomech. Biomed. Eng. 17:239–250, 2014.
CFR—Code of Federal Regulations Title 21 [Internet]. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=803.19 [cited 2014 Jun 4].
Choe, H., G. Hur, J. H. Doh, J. Namgung, S. Y. Lee, K. T. Park, et al. A case of very late stent thrombosis facilitated by drug eluting stent fracture: comparative images before and after stent fracture detected by 64-multidetector computed tomography. Int. J. Cardiol. 17(133):e125–128, 2009.
Choi G. In vivo quantification of arterial deformation due to pulsatile and non-pulsatile forces: implications for the design of stents and stent-grafts [Internet], 2009. http://gradworks.umi.com/33/82/3382704.html [cited 2014 Jun 4].
Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37:14–33, 2009.
Chung, W.-S., C.-S. Park, K.-B. Seung, P.-J. Kim, J.-M. Lee, B.-K. Koo, et al. The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int. J. Cardiol. 25(125):325–331, 2008.
Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 11(42):2425–2439, 2014.
Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:1–14, 2012.
Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, Vol. 138, London, 1956.
Dang-Van, K. Macro-micro approach in high-cycle multiaxial fatigue. In: Advances in multiaxial fatigue, edited by D. L. McDowell, and R. Ellis. Philadelphia: ASTM International, 1993, pp. 120–130.
Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 1(30):419–429, 2002.
Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, et al. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.
Duda, S. H., B. Pusich, G. Richter, P. Landwehr, V. L. Oliva, A. Tielbeek, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease six-month results. Circulation 17(106):1505–1509, 2002.
Early, M., and D. J. Kelly. The consequences of the mechanical environment of peripheral arteries for nitinol stenting. Med Biol Eng Comput 49:1279–1288, 2011.
Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12:25–33, 2009.
Halwani, D. O., P. G. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons. The role of vascular calcification in inducing fatigue and fracture of coronary stents. J. Biomed. Mater. Res. B Appl. Biomater. 1(100B):292–304, 2012.
Harewood, F. J., and P. E. McHugh. Modeling of size dependent failure in cardiovascular stent struts under tension and bending. Ann. Biomed. Eng. 35:1539–1553, 2007.
Hsiao, H.-M., and M.-T. Yin. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed. Microdev. 16:133–141, 2014.
Iida, O., S. Nanto, M. Uematsu, T. Morozumi, J. Kotani, M. Awata, et al. Effect of exercise on frequency of stent fracture in the superficial femoral artery. Am. J. Cardiol. 15(98):272–274, 2006.
Ino, Y., Y. Toyoda, A. Tanaka, S. Ishii, Y. Kusuyama, T. Kubo, et al. Predictors and prognosis of stent fracture after sirolimus-eluting stent implantation. Circ. J. 73:2036–2041, 2009.
Jaff, M., M. Dake, J. Pompa, G. Ansel, and T. Yoder. Standardized evaluation and reporting of stent fractures in clinical trials of noncoronary devices. Catheter Cardiovasc. Interv. 1(70):460–462, 2007.
LaDisa, J. F., L. E. Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed. Eng. OnLine 16(5):40, 2006.
Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005.
Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 1(25):333–337, 2010.
Liao, R., S.-Y. J. Chen, J. C. Messenger, B. M. Groves, J. E. B. Burchenal, and J. D. Carroll. Four-dimensional analysis of cyclic changes in coronary artery shape. Catheter Cardiovasc. Interv. 1(55):344–354, 2002.
Ling, A. J., P. Mwipatayi, T. Gandhi, and K. Sieunarine. Stenting for carotid artery stenosis: fractures, proposed etiology and the need for surveillance. J. Vasc. Surg. 1(47):1220–1226, 2008.
Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006.
McGarry, J. P., B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31:421–438, 2004.
Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational modelling of in vitro set-ups for peripheral self-expanding nitinol stents: the importance of stent-wall interaction in the assessment of the fatigue resistance. Cardiovasc. Eng. Technol. 1(4):474–484, 2013.
Messenger, J. C., S. Y. Chen, J. D. Carroll, J. E. Burchenal, K. Kioussopoulos, and B. M. Groves. 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int. J. Card. Imaging 16:413–427, 2000.
Min, P.-K., Y.-W. Yoon, and H. Moon Kwon. Delayed strut fracture of sirolimus-eluting stent: a significant problem or an occasional observation? Int. J. Cardiol. 26(106):404–406, 2006.
Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 3(47):899–907, 2014.
Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, et al. Incidence and predictors of drug-eluting stent fracture in human coronary artery: a pathologic analysis. J. Am. Coll. Cardiol. 17(54):1924–1931, 2009.
Park, M.-W., K. Chang, S. H. Her, J.-M. Lee, Y.-S. Choi, D.-B. Kim, et al. Incidence and clinical impact of fracture of drug-eluting stents widely used in current clinical practice: comparison with initial platform of sirolimus-eluting stent. J. Cardiol. 60:215–221, 2012.
Park, K. W., J. J. Park, I.-H. Chae, J.-B. Seo, H.-M. Yang, H.-Y. Lee, et al. Clinical characteristics of coronary drug-eluting stent fracture: insights from a two-center des registry. J. Korean Med. Sci. 26:53–58, 2011.
Park, J.-S., D.-G. Shin, Y.-J. Kim, G.-R. Hong, and I.-H. Cho. Acute myocardial infarction as a consequence of stent fracture and plaque rupture after sirolimus-eluting stent implantation. Int. J. Cardiol. 15(134):e79–81, 2009.
Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.
Popma, J. J., K. Tiroch, A. Almonacid, S. Cohen, D. E. Kandzari, and M. B. Leon. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am. J. Cardiol. 1(103):923–929, 2009.
Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 18(45):312–315, 2005.
Serikawa, T., T. Kawasaki, H. Koga, Y. Orita, S. Ikeda, Y. Goto, et al. Late catch-up phenomenon associated with stent fracture after sirolimus-eluting stent implantation: incidence and outcome. J. Interv. Cardiol. 24:165–171, 2011.
Sianos, G., S. Hofma, J. M. R. Ligthart, F. Saia, A. Hoye, P. A. Lemos, et al. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc. Interv. 1(61):111–116, 2004.
Sines, G., and G. Ohgi. Fatigue criteria under combined stresses or strains. J. Eng. Mater. Technol. 1(103):82–90, 1981.
Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.
Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015.
Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 1(78):341–353, 2014.
Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014.
Umeda, H., T. Kawai, N. Misumida, T. Ota, K. Hayashi, M. Iwase, et al. Impact of sirolimus-eluting stent fracture on 4-year clinical outcomes. Circ. Cardiovasc. Interv. 4:349–354, 2011.
Wu, W., D.-Z. Yang, M. Qi, and W.-Q. Wang. An FEA method to study flexibility of expanded coronary stents. J. Mater. Process. Technol. 12(184):447–450, 2007.
Zhu, H., J. J. Warner, T. R. Gehrig, and M. H. Friedman. Comparison of coronary artery dynamics pre- and post-stenting. J. Biomech. 36:689–697, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4