A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-015-1472-7 below:

A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case

Abstract

Nickel-Titanium (NiTi) peripheral stents are commonly used for the treatment of diseased femoropopliteal arteries (FPA). However, cyclic deformations of the vessel, induced by limb movements affect device performance and fatigue failure may occur. Stent strut fracture has been described in the literature, and is implicated as a potential causative factor in vessel re-occlusion. In this paper, a numerical approach is proposed to predict the fatigue behaviour of peripheral NiTi stents within patient-specific arterial geometries, as additional information to aid clinician intervention planning. The procedure needs some patient-specific vessel features derived from routine clinical images but, when this information is not available, reference data from the literature may be used, obviously increasing the uncertainties of the results. In addition, specific stent material data are required and can be obtained from experimental tests. Several 3D finite element models resembling stented vessel segments are built and used for fatigue analyses. For each model, axial cyclic boundary conditions are obtained from a patient-specific lumped parameter model representing the entire artery as a series of suitable springs. This allows the simplification of stiffness changes along the vessel due to plaque and stent that affect local axial deformations. Imposed local cyclic bending values depend on the stent location along the FPA. The procedure is exemplified by its application to an actual clinical case that showed two strut fractures at 18 months follow-up. Interestingly, despite the lack of some of patient-specific information and the use of data from the literature to inform the model, the numerical approach was able to interpret the in vivo fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Adlakha, S., M. Sheikh, J. Wu, M. V. Burket, U. Pandya, W. Colyer, M. D. Eltahawy, and C. J. Cooper. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23:411–419, 2010.

    Article  PubMed  Google Scholar 

  2. Ansari, F., L. Pack, S. Brooks, and T. Morrison. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J. Vasc. Surg. 58:804–813, 2013.

    Article  PubMed  Google Scholar 

  3. Azaouzi, M., N. Lebaal, A. Makradi, and S. Belouettar. Optimization based simulation of self-expanding nitinol stent. Mater. Design. 50:917–928, 2013.

    Article  CAS  Google Scholar 

  4. Celi, S., and S. Berti. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Med Image Anal. 18(7):1157–1168, 2014.

    Article  PubMed  Google Scholar 

  5. Centre, National Clinical Guideline. Lower limb peripheral arterial disease. Diagnosis and Management. London: National Clinical Guideline Centre, 2012.

    Google Scholar 

  6. Cheng, C. P., N. M. Wilson, R. L. Hallett, R. J. Herfkens, and C. A. Taylor. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol. 17:979–987, 2006.

    Article  PubMed  Google Scholar 

  7. Dick, P., H. Wallner, S. Sabeti, C. Loewe, W. Mlekusch, J. Lammer, R. Koppensteiner, E. Minar, and M. Schillinger. Balloon angioplasty versus stenting with nitinol stents in intermediate length superficial femoral artery lesions. Catheter. Cardiovasc. Interv. 74:1090–1095, 2009.

    Article  PubMed  Google Scholar 

  8. Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, and L. Petrini. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.

    Article  PubMed  Google Scholar 

  9. Early, M., and D. J. Kelly. The consequences of the mechanical environment of peripheral arteries for Nitinol stenting. Med Biol. Eng. Comput. 49:1279–1288, 2011.

    Article  PubMed  Google Scholar 

  10. Ganguly, A., J. Simons, A. Schneider, B. Keck, N. Bennett, R. Herfkens, S. Coogan, and R. Fahrig. In-vivo imaging of femoral artery nitinol stents for deformation analysis. J. Vasc. Interv. Radiol. 22:244–249, 2011.

    Article  PubMed  Google Scholar 

  11. Ghriallais, R., and M. Bruzzi. A computational analysis of the deformation of the femoropopliteal artery with stenting. J. Biomech. Eng. 35:1620–1628, 2014.

    Google Scholar 

  12. Gibbs, J. M., C. S. Peña, and J. F. Benenati. Treating the diseased superficial femoral artery. Tech. Vasc. Interv. Radiol. 13:37–42, 2010.

    Article  PubMed  Google Scholar 

  13. Harvey, S. M. Nitinol stent fatigue in peripheral artery subjected to pulsatile and articulation loading. J. Mater. Eng. Perform. 20:697–705, 2011.

    Article  CAS  Google Scholar 

  14. Hsiao, H. M., and M. T. Yin. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed Microdevices. 16:133–141, 2014.

    Article  CAS  PubMed  Google Scholar 

  15. Jonker, F. S., F. Moll, and B. Muhs. Dynamic forces in the SFA and popliteal artery during knee flexion. Endovasc. Today 5:53–58, 2008.

    Google Scholar 

  16. Joseph, J., E. A. Thomas, M. Sivaprakasam, and S. Suresh. ARTSENS—an image-free system for noninvasive evaluation of arterial compliance. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013:4054–4057, 2013.

    PubMed  Google Scholar 

  17. Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, C. S. Lomneth, S. A. Jaffar Kazmi, N. Y. Phillips, and J. N. MacTaggart. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta Biomater. 10:1301–1313, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Klein, A., S. Chen, J. Messenger, A. Hansgen, M. Plomondon, J. Carroll, and I. Casserly. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter. Cardiovasc. Interv. 74:787–798, 2009.

    Article  PubMed  Google Scholar 

  19. Learoyd, B., and M. Taylor. Alterations with age in the viscoelastic properties of human arterial walls. Circulation Research. 18:278–292, 1966.

    Article  CAS  PubMed  Google Scholar 

  20. Muller-Hulsbeck, S., P. J. Schãfer, N. Charalambous, H. Yagi, M. Heller, and T. Jahnke. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17:767–776, 2010.

    Article  PubMed  Google Scholar 

  21. Negi, S. I., and O. Rosales. The role of intravascular optical coherence tomography in peripheral percutaneous interventions. J Invasive Cardiol. 25(3):E51–E53, 2013.

    PubMed  Google Scholar 

  22. Neil, N. Stent fracture in the superficial femoral and proximal popliteal arteries: literature summary and economic impacts. Perspect. Vasc. Surg. Endovasc. Ther. 25:20–27, 2013.

    Article  PubMed  Google Scholar 

  23. Nikanorov, A., H. Smouse, K. Osman, M. Bialas, S. Shrivastava, and L. Schwartz. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48:435–440, 2008.

    Article  PubMed  Google Scholar 

  24. Petrini, L., W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati. Fatigue behavior characterization of nitinol for peripheral stents. Funct. Mater. Lett. 5(1):216–223, 2012.

    Article  Google Scholar 

  25. Scott, R., A. R. Pelton, and R. O. Ritchie. Mechanical fatigue and fracture of Nitinol. Inter. Mater. Rev. 57(1):1–37, 2011.

    Google Scholar 

  26. Testi, D., N. J. B. McFarlane, H. Wei, Y. Zhao, G. J. Clapworthy, D. M. Ryan, P. V. Lawford. AimaSimul: a software tool to plan stent positioning in peripheral arteries and evaluate the associated fatigue fracture risk. In: 13th IEEE International Conference on BioInformatics and BioEngineering. 10.1109/BIBE.2013.6701648.

  27. Vappou, J., J. Luo, and E. E. Konofagou. Pulse wave imaging for noninvasive and quantitative measurement of arterial stiffness in vivo. Am. J. Hypertens. 23(4):393–398, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zeller, T. Current state of endovascular treatment of femoro-popliteal artery disease. Vasc. Med. 12:223–234, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is within the project “RT3S—Real Time Simulation for Safe vascular Stenting” partially funded by the European Commission under the 7th Framework Programme, GA FP7-2009-ICT-4-248801.

Conflict of interest

There is no conflict of interest.

Author information Authors and Affiliations
  1. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy

    Lorenza Petrini

  2. Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy

    Antonia Trotta, Elena Dordoni, Francesco Migliavacca, Gabriele Dubini & Giancarlo Pennati

  3. Medical Physics Group, Department of Cardiovascular Science and the Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK

    Patricia V. Lawford, Jivendra N. Gosai & Desmond M. Ryan

  4. CINECA SuperComputing Centre, Casalecchio di Reno, Italy

    Debora Testi

Authors
  1. Lorenza Petrini
  2. Antonia Trotta
  3. Elena Dordoni
  4. Francesco Migliavacca
  5. Gabriele Dubini
  6. Patricia V. Lawford
  7. Jivendra N. Gosai
  8. Desmond M. Ryan
  9. Debora Testi
  10. Giancarlo Pennati
Corresponding author

Correspondence to Lorenza Petrini.

Additional information

Associate Editor Abdul I. Barakat oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

About this article Cite this article

Petrini, L., Trotta, A., Dordoni, E. et al. A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case. Ann Biomed Eng 44, 536–547 (2016). https://doi.org/10.1007/s10439-015-1472-7

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4