A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-015-1409-1 below:

Analysis of Shear-Induced Platelet Aggregation and Breakup

  • Bäbler, M. U., M. Morbidelli. Analysis of the aggregation-fragmentation population balance equation with application to coagulation. J. Colloid Interface Sci. 316(2):428–441, 2007. doi:10.1016/j.jcis.2007.08.029.

    Article  PubMed  Google Scholar 

  • Barthelmes, G., S. Pratsinis, H. Buggisch. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation. Chem. Eng. Sci. 58(13): 2893–2902, 2003. doi:10.1016/S0009-2509(03)00133-7.

    Article  CAS  Google Scholar 

  • Bell, D. N., S. Spain, H. L. Goldsmith. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex, and ADP concentration. Biophys. J. 56(5):829–843, 1989. Doi:10.1016/S0006-3495(89)82729-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatz, P. J., A. V. Tobolsky. Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena. J. Phys. Chem. 49(2):77–80, 1945. doi:10.1021/j150440a004.

    Article  CAS  Google Scholar 

  • Born, G. V. R., M. Hume. Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature 215(5105):1027–1029, 1967. doi:10.1038/2151027a0.

    Article  CAS  PubMed  Google Scholar 

  • Chang, H. N., C. R. Robertson. Platelet aggregation by laminar shear and Brownian motion. Ann. Biomed. Eng. 4(2):151–183, 1976. doi:10.1007/BF02363645

    Article  CAS  PubMed  Google Scholar 

  • David, P., A. C. Nair, V. Menon, D. Tripathi. Laser light scattering studies from blood platelets and their aggregates. Colloids Surf. B 6(2):101–114, 1996. doi:10.1016/0927-7765(95)01236-2.

    Article  CAS  Google Scholar 

  • Diamond, S. L. Systems biology of coagulation. J. Thromb. Haemostasis 11(Suppl.1):224–232, 2013. doi:10.1111/jth.12220

  • Frojmovic, M. M., J. G. Milton. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62(1):185–261, 1982.

    CAS  PubMed  Google Scholar 

  • Goldsmith, H. L., D. N. Bell, S. Braovac, A. Steinberg, F. McIntosh. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Biophys. J. 69(4):1584–95, 1995. Doi:10.1016/S0006-3495(95)80031-7.

  • Goldsmith, H. L., D. N. Bell, S. Spain, F. A. McIntosh. Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Biorheology 36(5–6):461–468, 1999.

    CAS  PubMed  Google Scholar 

  • Goldsmith, H. L., S. Spain. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27(2):204–222, 1984. doi:10.1016/0026-2862(84)90054-2.

    Article  CAS  PubMed  Google Scholar 

  • Huang, P. Y., J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part III. The disaggregation under shear stress of platelet aggregates. Biophys. J. 65(1):354–361 (1993a). doi:10.1016/S0006-3495(93)81080-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P. Y., J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part I. Development and validation of a population balance method. Biophys. J. 65(1):334–43, 1993c. doi:10.1016/S0006-3495(93)81078-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P. Y., J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys. J. 65(1):344–53, 1993b. doi:10.1016/S0006-3495(93)81079-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hund, S. J., J. F. Antaki, An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes. Phys. Med. Biol. 54(20):6415–6435, 2009. doi:10.1088/0031-9155/54/20/024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao, S. V., S. G. Mason. Dispersion of particles by shear. Nature 253(5493):619–621, 1975. doi:10.1038/253619a0.

    Article  CAS  Google Scholar 

  • Kostoglou, M., A. J. Karabelas. On the self-similarity of the aggregationGçôfragmentation equilibrium particle size distribution. J. Aerosol Sci. 30(2):157–162, 1999. doi:10.1016/S0021-8502(98)00045-7.

  • Kramer, T., Clark, M. Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 216(1):116–126 (1999). doi:10.1006/jcis.1999.6305.

    Article  CAS  PubMed  Google Scholar 

  • Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, J. L. Moake. Platelets and shear stress. Blood 88(5):1525–1541, 1996.

    CAS  PubMed  Google Scholar 

  • Kuharsky, A. L., A. L. Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3):1050–1074, 2001. doi:10.1016/S0006-3495(01)76085-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Ramkrishna, D. On the solution of population balance equations by discretizationGçöI. A fixed pivot technique. Chem. Eng. Sci. 51(8):1311–1332, 1996. doi:10.1016/0009-2509(96)88489-2.

  • Landolfi, R., R. De Cristofaro, E. De Candia, B. Rocca, B. Bizzi. Effect of fibrinogen concentration on the velocity of platelet aggregation. Blood 78(2):377–381, 1991. doi:10.1016/0049-3848(91)90490-N.

    CAS  PubMed  Google Scholar 

  • Lattuada, M., P. Sandkühler, H. Wu, J. Sefcik, M. Morbidelli. Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv. Colloid Interface Sci. 103(1):33–56, 2003. doi:10.1016/S0001-8686(02)00082-9.

    Article  CAS  PubMed  Google Scholar 

  • Leiderman, K., A. L. Fogelson. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. 28(1):47–84, 2011. doi:10.1093/imammb/dqq005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, M. Y., H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, P. Meakin. Universality in colloid aggregation. Nature 339(6223):360–362, 1989. doi:10.1038/339360a0.

    Article  CAS  Google Scholar 

  • Moiseyev, G., P. Z. Bar-Yoseph. Computational modeling of thrombosis as a tool in the design and optimization of vascular implants. J. Biomech. 46(2):248–252 (2013). doi:10.1016/j.jbiomech.2012.11.002.

    Article  PubMed  Google Scholar 

  • Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15(6):665–673, 2009. doi:10.1038/nm.1955.

    Article  CAS  PubMed  Google Scholar 

  • Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9(3):10–20, 2007. doi:10.1109/MCSE.2007.58.

    Article  CAS  Google Scholar 

  • Pandya, J., L. Spielman. Floc breakage in agitated suspensions: theory and data processing strategy. J. Colloid Interface Sci. 90(2):517–531, 1982. doi:10.1016/0021-9797(82)90317-4.

    Article  CAS  Google Scholar 

  • Pandya, J., L. Spielman. Floc breakage in agitated suspensions: effect of agitation rate. Chem. Eng. Sci. 38(12):1983–1992, 1983. doi:10.1016/0009-2509(83)80102-X.

    Article  CAS  Google Scholar 

  • Paulus, J. M. Platelet size in man. Blood 46(3):321–36, 1975.

    CAS  PubMed  Google Scholar 

  • Pedocchi, F., I. Piedra-Cueva. Camp and SteinGçös velocity gradient formalization. J. Environ. Eng. 131(10):1369–1376, 2005. doi:10.1061/(ASCE)0733-9372(2005)131:10(1369).

    Article  CAS  Google Scholar 

  • Reif, F. Statistical Physics 398 (McGraw-Hill, New York, 1967).

    Google Scholar 

  • Saffman, P. G., J. S. Turner. On the collision of drops in turbulent clouds. J. Fluid Mech. 1(01):16–30, 1956. doi:10.1017/S0022112056000020.

    Article  Google Scholar 

  • Schneider, S. W., S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R.R. Netz, M.F. Schneider. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA. 104(19):7899–903,2007. doi:10.1073/pnas.0608422104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, I., E. Themistou, L. Porcar, S. Neelamegham. Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96(6):2313–2320, 2009. doi:10.1016/j.bpj.2008.12.3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slomkowski, S, J. V. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek, R. F. T. Stepto. Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure Appl. Chem. 83(12):2229–2259, 2011. doi:.10.1351/PAC-REC-10-06-03

    Article  CAS  Google Scholar 

  • Soos, M, J. Sefcik, M. Morbidelli. Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering. Chem. Eng. Sci. 61(8):2349–2363, 2006. doi:10.1016/j.ces.2005.11.001.

    Article  CAS  Google Scholar 

  • Sorensen, C. M. The mobility of fractal aggregates: a review. Aerosol Sci. Technol. 45(7):765–779, 2011. doi:10.1080/02786826.2011.560909.

    Article  CAS  Google Scholar 

  • Sorensen, E. N., G. W. Burgreen, W. R. Wagner, J. F. Antaki, Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, E. N., G. W. Burgreen, W. R. Wagner, J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–48, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Spicer, P. T., S. E. Pratsinis. Coagulation and fragmentation: universal steady-state particle-size distribution. AIChE J. 42(6):1612–1620, 1996. doi:10.1002/aic.690420612.

    Article  CAS  Google Scholar 

  • Spicer, P. T., S. E. Pratsinis, J. Raper, R. Amal, G. Bushell, G. Meesters. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol. 97(1):26–34, 1998. doi:10.1016/S0032-5910(97)03389-5.

    Article  CAS  Google Scholar 

  • Spicer, P. T., S. E. Pratsinis, M. D. Trennepohl, G. H. M. Meesters. Coagulation and fragmentation: the variation of shear rate and the time lag for attainment of steady state. Ind. Eng. Chem. Res. 35(9):3074–3080, 1996. doi:10.1021/ie950786n.

    Article  CAS  Google Scholar 

  • von Smoluchowski, M. R. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physikalische Zeitschrift 17:585–599, 1916.

    Google Scholar 

  • von Smoluchowski, M. R., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift fuer physikalische Chemie 92(1912):129–168, 1917.

    Google Scholar 

  • Westein, E., A. D. van der Meer, M. J. E. Kuijpers, J. P. Frimat, A. van den Berg, J. W. M. Heemskerk. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl. Acad. Sci. USA 110(4):1357–1362, 2013. doi:10.1073/pnas.1209905110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Z., M. M. Frojmovic. Aggregation efficiency of activated normal or fixed platelets in a simple shear field: effect of shear and fibrinogen occupancy. Biophys. J. 66(6):2190–201, 1994. doi:10.1016/S0006-3495(94)81015-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4