A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-015-1406-4 below:

Effects of Osmolarity on the Spontaneous Calcium Signaling of In Situ Juvenile and Adult Articular Chondrocytes

References
  1. Berridge, M. J., P. Lipp, and M. D. Bootman. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1:11–21, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Browning, J. A., K. Saunders, J. P. Urban, and R. J. Wilkins. The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. Biorheology 41:299–308, 2004.

    CAS  PubMed  Google Scholar 

  3. Burstein, D., M. L. Gray, A. L. Hartman, R. Gipe, and B. D. Foy. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11:465–478, 1993.

    Article  CAS  PubMed  Google Scholar 

  4. Bush, P. G., and A. C. Hall. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J. Cell. Physiol. 187:304–314, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Chahine, N. O., C. Blanchette, C. B. Thomas, J. Lu, D. Haudenschild, and G. G. Loots. Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes. PLoS One 8:e61651, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chao, P. G., Z. Tang, E. Angelini, A. C. West, K. D. Costa, and C. T. Hung. Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J. Biomech. 38:1273–1281, 2005.

    Article  PubMed  Google Scholar 

  7. Chao, P. H., A. C. West, and C. T. Hung. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am. J. Physiol. Cell Physiol. 291:C718–C725, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Charles, A. C., and T. G. Hales. Mechanisms of spontaneous calcium oscillations and action potentials in immortalized hypothalamic (GT1-7) neurons. J. Neurophysiol. 73:56–64, 1995.

    CAS  PubMed  Google Scholar 

  9. Clapham, D. E. Calcium signaling. Cell 131:1047–1058, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. Clark, A. L., B. J. Votta, S. Kumar, W. Liedtke, and F. Guilak. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in TRPV4-deficient mice. Arthritis Rheum. 62:2973–2983, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D’Andrea, P., and F. Vittur. Spatial and temporal Ca2+ signalling in articular chondrocytes. Biochem. Biophys. Res. Commun. 215:129–135, 1995.

    Article  PubMed  Google Scholar 

  12. Degala, S., R. Williams, W. Zipfel, and L. J. Bonassar. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture. J. Orthop. Res. 30:793–799, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Degala, S., W. R. Zipfel, and L. J. Bonassar. Chondrocyte calcium signaling in response to fluid flow is regulated by matrix adhesion in 3-D alginate scaffolds. Arch. Biochem. Biophys. 505:112–117, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Donahue, S. W., H. J. Donahue, and C. R. Jacobs. Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J. Biomech. 36:35–43, 2003.

    Article  PubMed  Google Scholar 

  15. Erickson, G. R., L. G. Alexopoulos, and F. Guilak. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J. Biomech. 34:1527–1535, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Erickson, G. R., D. L. Northrup, and F. Guilak. Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthr. Cartil. 11:187–197, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Ermak, G., and K. J. Davies. Calcium and oxidative stress: from cell signaling to cell death. Mol. Immunol. 38:713–721, 2002.

    Article  CAS  PubMed  Google Scholar 

  18. Fodor, J., C. Matta, T. Olah, T. Juhasz, R. Takacs, A. Toth, B. Dienes, L. Csernoch, and R. Zakany. Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell Calcium 54:1–16, 2013.

    Article  CAS  PubMed  Google Scholar 

  19. Gao, X., Q. Zhu, and W. Gu. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues. J. Biomech. 48:573–577, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grodzinsky, A. J., M. E. Levenston, M. Jin, and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Gu, W. Y., W. M. Lai, and V. C. Mow. A triphasic analysis of negative osmotic flows through charged hydrated soft tissues. J. Biomech. 30:71–78, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Guilak, F., D. L. Butler, S. A. Goldstein, and F. P. Baaijens. Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47:1933–1940, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guilak, F., G. R. Erickson, and H. P. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82:720–727, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hdud, I. M., A. Mobasheri, and P. T. Loughna. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am. J. Physiol. Cell Physiol. 306:C1050–C1057, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Huo, B., X. L. Lu, and X. E. Guo. Intercellular calcium wave propagation in linear and circuit-like bone cell networks. Philos. Trans. A Math. Phys. Eng. Sci. 368:617–633, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huo, B., X. L. Lu, C. T. Hung, K. D. Costa, Q. Xu, G. M. Whitesides, and X. E. Guo. Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1:58–66, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irianto, J., J. Swift, R. P. Martins, G. D. McPhail, M. M. Knight, D. E. Discher, and D. A. Lee. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys. J. 104:759–769, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jing, D., A. D. Baik, X. L. Lu, B. Zhou, X. Lai, L. Wang, E. Luo, and X. E. Guo. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J. 28:1582–1592, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung, H., M. Best, and O. Akkus. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels. Bone 76:88–96, 2015.

    Article  PubMed  Google Scholar 

  30. Kerrigan, M. J., C. S. Hook, A. Qusous, and A. C. Hall. Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J. Cell. Physiol. 209:481–492, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, T. J., J. Seong, M. Ouyang, J. Sun, S. Lu, J. P. Hong, N. Wang, and Y. Wang. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J. Cell. Physiol. 218:285–293, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kono, T., T. Nishikori, H. Kataoka, Y. Uchio, M. Ochi, and K. Enomoto. Spontaneous oscillation and mechanically induced calcium waves in chondrocytes. Cell Biochem. Funct. 24:103–111, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, H., Z. Zhao, R. B. Clarke, J. Gao, I. R. Garrett, and E. E. Margerrison. Enhanced tissue regeneration potential of juvenile articular cartilage. Am. J. Sports Med. 41:2658–2667, 2013.

    Article  PubMed  Google Scholar 

  34. Loeser, R. F., A. L. Olex, M. A. McNulty, C. S. Carlson, M. F. Callahan, C. M. Ferguson, J. Chou, X. Leng, and J. S. Fetrow. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64:705–717, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu, X. L., B. Huo, V. Chiang, and X. E. Guo. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J. Bone Miner. Res. 27:563–574, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, X. L., and V. C. Mow. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40:193–199, 2008.

    Article  PubMed  Google Scholar 

  37. Lu, X. L., V. C. Mow, and X. E. Guo. Proteoglycans and mechanical behavior of condylar cartilage. J. Dent. Res. 88:244–248, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Machaca, K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium 49:323–330, 2011.

    Article  CAS  PubMed  Google Scholar 

  39. Martin, J. A., and J. A. Buckwalter. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3:257–264, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Mobasheri, A., C. Matta, R. Zakany, and G. Musumeci. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80:237–244, 2015.

    Article  CAS  PubMed  Google Scholar 

  41. Mow, V. C., and R. Huiskers. Basic Orthopaedic Biomechanics and Mechanobiology. Philadelphia: Lippincott Williams & Wilkins, 2005.

    Google Scholar 

  42. Negoro, K., S. Kobayashi, K. Takeno, K. Uchida, and H. Baba. Effect of osmolarity on glycosaminoglycan production and cell metabolism of articular chondrocyte under three-dimensional culture system. Clin. Exp. Rheumatol. 26:534–541, 2008.

    CAS  PubMed  Google Scholar 

  43. O’Conor, C. J., H. A. Leddy, H. C. Benefield, W. B. Liedtke, and F. Guilak. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA 111:1316–1321, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Phan, M. N., H. A. Leddy, B. J. Votta, S. Kumar, D. S. Levy, D. B. Lipshutz, S. H. Lee, W. Liedtke, and F. Guilak. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60:3028–3037, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pritchard, S., B. J. Votta, S. Kumar, and F. Guilak. Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes. Osteoarthritis Cartil. 16:1466–1473, 2008.

    Article  CAS  Google Scholar 

  46. Racz, B., D. Reglodi, B. Fodor, B. Gasz, A. Lubics, F. Gallyas, Jr, E. Roth, and B. Borsiczky. Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone 40:1536–1543, 2007.

    Article  CAS  PubMed  Google Scholar 

  47. Rotter, N., G. Tobias, M. Lebl, A. K. Roy, M. C. Hansen, C. A. Vacanti, and L. J. Bonassar. Age-related changes in the composition and mechanical properties of human nasal cartilage. Arch. Biochem. Biophys. 403:132–140, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Sanchez, J. C., T. A. Danks, and R. J. Wilkins. Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes. Gen. Physiol. Biophys. 22:487–500, 2003.

    CAS  PubMed  Google Scholar 

  49. Tran-Khanh, N., C. D. Hoemann, M. D. McKee, J. E. Henderson, and M. D. Buschmann. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J. Orthop. Res. 23:1354–1362, 2005.

    Article  CAS  PubMed  Google Scholar 

  50. Urban, J. P., A. C. Hall, and K. A. Gehl. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell. Physiol. 154:262–270, 1993.

    Article  CAS  PubMed  Google Scholar 

  51. Xu, J., W. Wang, C. C. Clark, and C. T. Brighton. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartil. 17:397–405, 2009.

    Article  CAS  Google Scholar 

  52. Yellowley, C. E., J. C. Hancox, and H. J. Donahue. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes. J. Cell. Biochem. 86:290–301, 2002.

    Article  CAS  PubMed  Google Scholar 

  53. Yellowley, C. E., C. R. Jacobs, Z. Li, Z. Zhou, and H. J. Donahue. Effects of fluid flow on intracellular calcium in bovine articular chondrocytes. Am. J. Physiol. 273:C30–C36, 1997.

    CAS  PubMed  Google Scholar 

  54. Zhou, Y., M. Park, E. Cheung, L. Wang, and X. L. Lu. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture. J. Biomech. 48:990–996, 2015.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4