Berridge, M. J., P. Lipp, and M. D. Bootman. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1:11–21, 2000.
Browning, J. A., K. Saunders, J. P. Urban, and R. J. Wilkins. The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. Biorheology 41:299–308, 2004.
Burstein, D., M. L. Gray, A. L. Hartman, R. Gipe, and B. D. Foy. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11:465–478, 1993.
Bush, P. G., and A. C. Hall. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J. Cell. Physiol. 187:304–314, 2001.
Chahine, N. O., C. Blanchette, C. B. Thomas, J. Lu, D. Haudenschild, and G. G. Loots. Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes. PLoS One 8:e61651, 2013.
Chao, P. G., Z. Tang, E. Angelini, A. C. West, K. D. Costa, and C. T. Hung. Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J. Biomech. 38:1273–1281, 2005.
Chao, P. H., A. C. West, and C. T. Hung. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am. J. Physiol. Cell Physiol. 291:C718–C725, 2006.
Charles, A. C., and T. G. Hales. Mechanisms of spontaneous calcium oscillations and action potentials in immortalized hypothalamic (GT1-7) neurons. J. Neurophysiol. 73:56–64, 1995.
Clapham, D. E. Calcium signaling. Cell 131:1047–1058, 2007.
Clark, A. L., B. J. Votta, S. Kumar, W. Liedtke, and F. Guilak. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in TRPV4-deficient mice. Arthritis Rheum. 62:2973–2983, 2010.
D’Andrea, P., and F. Vittur. Spatial and temporal Ca2+ signalling in articular chondrocytes. Biochem. Biophys. Res. Commun. 215:129–135, 1995.
Degala, S., R. Williams, W. Zipfel, and L. J. Bonassar. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture. J. Orthop. Res. 30:793–799, 2012.
Degala, S., W. R. Zipfel, and L. J. Bonassar. Chondrocyte calcium signaling in response to fluid flow is regulated by matrix adhesion in 3-D alginate scaffolds. Arch. Biochem. Biophys. 505:112–117, 2011.
Donahue, S. W., H. J. Donahue, and C. R. Jacobs. Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J. Biomech. 36:35–43, 2003.
Erickson, G. R., L. G. Alexopoulos, and F. Guilak. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J. Biomech. 34:1527–1535, 2001.
Erickson, G. R., D. L. Northrup, and F. Guilak. Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthr. Cartil. 11:187–197, 2003.
Ermak, G., and K. J. Davies. Calcium and oxidative stress: from cell signaling to cell death. Mol. Immunol. 38:713–721, 2002.
Fodor, J., C. Matta, T. Olah, T. Juhasz, R. Takacs, A. Toth, B. Dienes, L. Csernoch, and R. Zakany. Store-operated calcium entry and calcium influx via voltage-operated calcium channels regulate intracellular calcium oscillations in chondrogenic cells. Cell Calcium 54:1–16, 2013.
Gao, X., Q. Zhu, and W. Gu. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues. J. Biomech. 48:573–577, 2015.
Grodzinsky, A. J., M. E. Levenston, M. Jin, and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691, 2000.
Gu, W. Y., W. M. Lai, and V. C. Mow. A triphasic analysis of negative osmotic flows through charged hydrated soft tissues. J. Biomech. 30:71–78, 1997.
Guilak, F., D. L. Butler, S. A. Goldstein, and F. P. Baaijens. Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47:1933–1940, 2014.
Guilak, F., G. R. Erickson, and H. P. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82:720–727, 2002.
Hdud, I. M., A. Mobasheri, and P. T. Loughna. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am. J. Physiol. Cell Physiol. 306:C1050–C1057, 2014.
Huo, B., X. L. Lu, and X. E. Guo. Intercellular calcium wave propagation in linear and circuit-like bone cell networks. Philos. Trans. A Math. Phys. Eng. Sci. 368:617–633, 2010.
Huo, B., X. L. Lu, C. T. Hung, K. D. Costa, Q. Xu, G. M. Whitesides, and X. E. Guo. Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1:58–66, 2008.
Irianto, J., J. Swift, R. P. Martins, G. D. McPhail, M. M. Knight, D. E. Discher, and D. A. Lee. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys. J. 104:759–769, 2013.
Jing, D., A. D. Baik, X. L. Lu, B. Zhou, X. Lai, L. Wang, E. Luo, and X. E. Guo. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J. 28:1582–1592, 2014.
Jung, H., M. Best, and O. Akkus. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels. Bone 76:88–96, 2015.
Kerrigan, M. J., C. S. Hook, A. Qusous, and A. C. Hall. Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J. Cell. Physiol. 209:481–492, 2006.
Kim, T. J., J. Seong, M. Ouyang, J. Sun, S. Lu, J. P. Hong, N. Wang, and Y. Wang. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J. Cell. Physiol. 218:285–293, 2009.
Kono, T., T. Nishikori, H. Kataoka, Y. Uchio, M. Ochi, and K. Enomoto. Spontaneous oscillation and mechanically induced calcium waves in chondrocytes. Cell Biochem. Funct. 24:103–111, 2006.
Liu, H., Z. Zhao, R. B. Clarke, J. Gao, I. R. Garrett, and E. E. Margerrison. Enhanced tissue regeneration potential of juvenile articular cartilage. Am. J. Sports Med. 41:2658–2667, 2013.
Loeser, R. F., A. L. Olex, M. A. McNulty, C. S. Carlson, M. F. Callahan, C. M. Ferguson, J. Chou, X. Leng, and J. S. Fetrow. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64:705–717, 2012.
Lu, X. L., B. Huo, V. Chiang, and X. E. Guo. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J. Bone Miner. Res. 27:563–574, 2012.
Lu, X. L., and V. C. Mow. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40:193–199, 2008.
Lu, X. L., V. C. Mow, and X. E. Guo. Proteoglycans and mechanical behavior of condylar cartilage. J. Dent. Res. 88:244–248, 2009.
Machaca, K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium 49:323–330, 2011.
Martin, J. A., and J. A. Buckwalter. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3:257–264, 2002.
Mobasheri, A., C. Matta, R. Zakany, and G. Musumeci. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80:237–244, 2015.
Mow, V. C., and R. Huiskers. Basic Orthopaedic Biomechanics and Mechanobiology. Philadelphia: Lippincott Williams & Wilkins, 2005.
Negoro, K., S. Kobayashi, K. Takeno, K. Uchida, and H. Baba. Effect of osmolarity on glycosaminoglycan production and cell metabolism of articular chondrocyte under three-dimensional culture system. Clin. Exp. Rheumatol. 26:534–541, 2008.
O’Conor, C. J., H. A. Leddy, H. C. Benefield, W. B. Liedtke, and F. Guilak. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA 111:1316–1321, 2014.
Phan, M. N., H. A. Leddy, B. J. Votta, S. Kumar, D. S. Levy, D. B. Lipshutz, S. H. Lee, W. Liedtke, and F. Guilak. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60:3028–3037, 2009.
Pritchard, S., B. J. Votta, S. Kumar, and F. Guilak. Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes. Osteoarthritis Cartil. 16:1466–1473, 2008.
Racz, B., D. Reglodi, B. Fodor, B. Gasz, A. Lubics, F. Gallyas, Jr, E. Roth, and B. Borsiczky. Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone 40:1536–1543, 2007.
Rotter, N., G. Tobias, M. Lebl, A. K. Roy, M. C. Hansen, C. A. Vacanti, and L. J. Bonassar. Age-related changes in the composition and mechanical properties of human nasal cartilage. Arch. Biochem. Biophys. 403:132–140, 2002.
Sanchez, J. C., T. A. Danks, and R. J. Wilkins. Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes. Gen. Physiol. Biophys. 22:487–500, 2003.
Tran-Khanh, N., C. D. Hoemann, M. D. McKee, J. E. Henderson, and M. D. Buschmann. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J. Orthop. Res. 23:1354–1362, 2005.
Urban, J. P., A. C. Hall, and K. A. Gehl. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell. Physiol. 154:262–270, 1993.
Xu, J., W. Wang, C. C. Clark, and C. T. Brighton. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartil. 17:397–405, 2009.
Yellowley, C. E., J. C. Hancox, and H. J. Donahue. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes. J. Cell. Biochem. 86:290–301, 2002.
Yellowley, C. E., C. R. Jacobs, Z. Li, Z. Zhou, and H. J. Donahue. Effects of fluid flow on intracellular calcium in bovine articular chondrocytes. Am. J. Physiol. 273:C30–C36, 1997.
Zhou, Y., M. Park, E. Cheung, L. Wang, and X. L. Lu. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture. J. Biomech. 48:990–996, 2015.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4