Augenstein, K. F., B. R. Cowan, I. J. LeGrice, and A. A. Young (2006) Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006. Berlin: Springer, pp. 628–635.
Baillargeon, B., N. Rebelo, D. D. Fox, R. L. Taylor, and E. Kuhl. The living heart project: a robust and integrative simulator for human heart function. Eur. J. Mech. A. Solids 48:38–47, 2014.
Costa, K. D., J. W. Holmes, and A. D. McCulloch. Modelling cardiac mechanical properties in three dimensions. Philos Trans. R. Soc A. 359(1783):1233–1250, 2001.
Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 283(6):H2650–H2659, 2002.
Gao, H., D. Carrick, C. Berry, and X. Luo. Parameter estimation of the Holzapfel–Ogden law for healthy myocardium. J. Eng. Math. 2014. doi:10.1007/s10665-014-9740-3.
Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.
Gilbert, S. H., A. P. Benson, P. Li, and A. V. Holden. Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur. J. Cardiothorac. Surg. 32(2):231–249, 2007.
Göktepe, S., S. N. S. Acharya, J. Wong, and E. Kuhl. Computational modeling of passive myocardium. Int. J. Numer. Methods Biomed. Eng. 27(1):1–12, 2011.
Grimm, A., K. Katele, H.-L. Lin, and J. Fletcher. Fiber bundle direction in the mammalian heart. Basic Res. Cardiol. 71(4):381–388, 1976.
Guccione, J., A. McCulloch, and L. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1):42–55, 1991.
Holzapfel, G. A. Nonlinear Solid Mechanics. Chichester: Wiley, 2000.
Holzapfel, G. A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367(1902):3445–3475, 2009.
Humphrey, J., R. Strumpf, and F. Yin. Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112(3):333–339, 1990.
Humphrey, J., and F. Yin. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J. Biomech. Eng. 109(4):298–304, 1987.
Hunter, P., M. Nash, and G. Sands. Computational electromechanics of the heart. Comput. Biol. Heart. 12:347–407, 1997.
Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol. 52(2):101–164, 1988.
Kerckhoffs, R., P. Bovendeerd, J. Kotte, F. Prinzen, K. Smits, and T. Arts. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31(5):536–547, 2003.
Klotz, S., I. Hay, M. L. Dickstein, G.-H. Yi, J. Wang, M. S. Maurer, D. A. Kass, and D. Burkhoff. Single-beat estimation of end-diastolic pressure–volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291(1):H403–H412, 2006.
Krishnamurthy, A., C. T. Villongco, J. Chuang, L. R. Frank, V. Nigam, E. Belezzuoli, P. Stark, D. E. Krummen, S. Narayan, and J. H. Omens. Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244:4–21, 2013.
Lee, W.-N., M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A. A. Hagege, M. Fink, and M. Tanter. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans. Med. Imaging 31(3):554–562, 2012.
LeGrice, I. J., B. Smaill, L. Chai, S. Edgar, J. Gavin, and P. J. Hunter. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol. 38(2):H571, 1995.
Mojsejenko, D., J. R. McGarvey, S. M. Dorsey, J. H. Gorman, III, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech. Model. Mechanobiol. 14(3):633–647, 2015.
Nair, A. U., D. G. Taggart, and F. J. Vetter. Optimizing cardiac material parameters with a genetic algorithm. J. Biomech. 40(7):1646–1650, 2007.
Okamoto, R. J., M. J. Moulton, S. J. Peterson, D. Li, M. K. Pasque, and J. M. Guccione. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. J. Biomech. Eng. 122(5):479–487, 2000.
Sands, G. B., D. A. Gerneke, D. A. Hooks, C. R. Green, B. H. Smaill, and I. J. Legrice. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67(5):227–239, 2005.
Schmid, H., M. Nash, A. Young, and P. Hunter. Myocardial material parameter estimation—a comparative study for simple shear. J. Biomech. Eng. 128(5):742–750, 2006.
Spotnitz, H. M., W. D. Spotnitz, T. S. Cottrell, D. Spiro, and E. H. Sonnenblick. Cellular basis for volume related wall thickness changes in the rat left ventricle. J. Mol. Cell. Cardiol. 6(4):317–331, 1974.
Streeter, D. D., H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3):339–347, 1969.
Sun, K., N. Stander, C.-S. Jhun, Z. Zhang, T. Suzuki, G.-Y. Wang, M. Saeed, A. W. Wallace, E. E. Tseng, and A. J. Baker. A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J. Biomech. Eng. 131(11):111001, 2009.
Walker, J. C., M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, D. Saloner, and J. M. Guccione. Mri-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Heart Circ. Physiol. 289(2):H692–H700, 2005.
Wang, H. M., H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, and T. J. Wang. Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Method Biomed. Eng. 29(1):83–103, 2013.
Wang, H., X. Luo, H. Gao, R. Ogden, B. Griffith, C. Berry, and T. Wang. A modified Holzapfel–Ogden law for a residually stressed finite strain model of the human left ventricle in diastole. Biomech. Model. Mechanobiol. 13(1):99–113, 2014.
Wenk, J. F., P. Papadopoulos, and T. I. Zohdi. Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation. J. Biomech. Eng. 132(9):091011, 2010.
Xi, J., P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S. G. Duckett, A. K. Shetty, and C. A. Rinaldi. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2):133–146, 2013.
Xu, C., J. J. Pilla, G. Isaac, J. H. Gorman, 3rd, A. S. Blom, R. C. Gorman, Z. Ling, and L. Dougherty. Deformation analysis of 3D tagged cardiac images using an optical flow method. J. Cardiovasc. Magn. Reson. 12:19, 2010.
Young, A., I. LeGrice, M. Young, and B. Smaill. Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192(2):139–150, 1998.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4