Carson, J. P., A. P. Kuprat, X. Jiao, F. del Pin, and D. R. Einstein. An anisotropic fluid-solid model of the mouse heart. Comput. Cardiol. 36:377–380, 2009.
Chandran, K. B. and H. Kim. Computational mitral valve evaluation and potential clinical applications. Annal. Biomed. Eng. 43(6):1348–1362, 2015.
Cochran, R. P. and K. S. Kunzelman. Effect of papillary muscle position on mitral valve function: relationship to mitral homografts. Annal. Thorac. Surg., 66(Suppl):S155–S161, 1998.
Couprie, C., L. Grady, L. Najman, and H. Talbot. Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. in International Conference on Computer Vision, 2009.
Couprie, C., L. Grady, L. Najman, and H. Talbot. Power watersheds: a unifying graph-based optimization framework. IEEE Trans. Pattern Anal. Mach. Intell. 33(7):1384–1399, 2010.
Einstein, D. R., F. DelPin, X. Jiao, A. P. Kuprat, J. P. Carson, K. S. Kunzelman, R. P. Cochran, J. M. Guccione, and M. B. Ratclifee. Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present, and future. Int. J. Numer. Methods Biomed. Eng. 26(3–4):348–380, 2010.
Einstein, D., X. Jiao, and A. Kuprat. BioGeom: an integrated environment for geometric computations in biomedicine. URL: https://simtk.org/home/biogeom.
Einstein, D. R., K. S. Kunzelman, P. G. Reinhall, M. A. Nicosia, and R. P. Cochran. The relationship of normal and abnormal microstructural proliferation to the mitral valve closure sound. Trans. ASME 127:134–147, 2005.
Einstein, D. R., P. G. Reinhall, K. S. Kunzelman, and R. P. Cochran. Nonlinear finite element analysis of the mitral valve. J. Heart Valve Dis. 3:376–385, 2005.
Freed, A. D., D. R. Einstein, and I. Vesely. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model Mechanobiol. 4:100–117, 2005.
He, S., J. D. Lemmon, M. W. Weston, M. O. Jensen, R. A. Levine, and A. P. Yoganathan. Mitral valve compensation for annular dilatation: in vitro study into the mechanisms of functional mitral regurgitation with an adjustable annulus model. J. Heart Valve Dis.8:294–302, 1999.
Ingels, Jr. N. B., and M. Karlsson. Mitral valve mechanics. Dropbox https://www.dropbox.com/sh/lbd9l7pl9cj8s1o/AADp8vFqWboXXsn0P4wTKgjNa Chapter 22, 2014.
Jensen, M. O., A. A. Fontaine, and A. P. Yoganathan. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three-dimensional force vector measurement system. Annal. Biomed. Eng., 29: 406–412, 2001.
Jensen, H., M. O. Jensen, and M. H. Smerup. Three-dimensional assessment of papillary muscle displacement in a porcine model of ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 140:1312–1318, 2010.
Kunzelman, K. S. and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Cardiac Surg. 7(1):71–78, 1992.
Kunzelman, K. S., R. P. Cochran, C. J. Chuong, W. S. Ring, E. D. Verier, and R. C. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2:326–340, 1993.
Kunzelman, K. S., R. P. Cochran, C. J. Chuong, W. S. Ring, E. D. Verier, and R. C. Eberhart. Finite element analysis of mitral valve pathology. J. Long Term Eff. Med. Implant 3:161–179, 1993.
Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. B, 362:1393–1406, 2007.
Kunzelman, K.S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5:427–434, 1997.
Kunzelman, K.S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilation: a finite element model. J. Heart Valve Dis., 7:108–116, 1998.
Kunzelman, K.S., M. S. Reimink, E. D. Verier, and R. P. Cochran. Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study. J. Card. Surg. 11:136–145, 1996.
Kuprat, A. P. and D. R. Einstein. An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data. J. Comput. Phys. 228:619–640, 2009.
Kuprat, A., A. Khamayseh, D. George, and L. Larkey. Volume conserving smoothing for piecewise linear curves, surfaces, and triple lines. J. Comput. Phys. 172: 99–118, 2001.
Lau, K. D., V. Diaz, P. Scambler, and G. Burriesci. Mitral valve dynamics in structural and fluid–structure interaction models. Med. Eng. Phys. 32:1057–1064, 2010.
Lee, C. -H., J.- P. Rabbah, A. P. Yoganathan, R. C. Gorman III, J. H. Gorman, and M. S. Sacks. On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomech. Model Mechanobiol. 2015. doi:10.1007/s10237-015-0674-0.
Magne, J., M. Senechal, J. G. Dumesnil, and P. Pibarot. Ischemic mitral regurgitation: a complex multifaceted disease. Cardiology 112:244–259, 2009.
Maisano, F., A. Redaelli, M. Soncini, E. Votta, L. Arcobasso, and O. Alfieri. An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone–shaped ring prosthesis. Ann. Thorac. Surg. 79:1268–1275, 2005.
Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, R. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to mitralclip intervention planning. Med. Image Anal. 16:1330–1346, 2012.
Mansi, T., I. Voigt, E. A. Mengue, R. Ionasec, B. Georgescu, T. Noack, J. Seeburger, and D. Comaniciu, Medical Image Computing and Computer-Assisted Intervention, chapter Towards Patient-Specific Finite-Element Simulation of MitralClip Procedure, Springer Berlin, Heidelberg, 2011.
Pouch, A. M., P. A. Yushkevich, B. M. Jackson, A. S. Jassaar, M. Vergnat, J. H. Gorman, R. C. Gorman, and C. M. Sehgal. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3d ultrasound. Med. Phys. 39(2):933–950, 2012.
Prot, V., R. Haaverstad, and B. Skallerud. Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8(1):43–55, 2009.
Rabbah, J.-P., N. Saikrishnan, and A. P. Yoganathan. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41(2):305–315, 2013.
Rahmani, A., A. Q. Rasmussen, J. L. Honge, B. Ostli, R. A. Levine, A. Hagege, H. Nygaard, S. L. Nielsen, and M. O. Jensen. Mitral valve mechanics following posterior leaflet patch augmentation. J. Heart Valve Dis. 22(1):28–35, 2013.
Reimink, M. S., K. S. Kunzelman, and R. P. Cochran. The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study. J. Heart Valve Dis. 5:365–375, 1996.
Reimink, M. S., K. S. Kunzelman, E. D. Verier, and R. P. Cochran. The effect of anterior chordal replacement on mitral valve function and stresses. ASAIO Trans. 41:M754–M762, 1995.
Rim, Y., S. T. Laing, D. D. McPherson, and H. Kim. Mitral valve repair using eptfe sutures for ruptured mitral chordae tendineae: a computational simulation study. Ann. Biomed. Eng. 42(1): 139–148, 2013.
M. S. Sacks. Incorporation of experimentally-derived fiber orientation into a structual constitutive model for planar collagenous tissues. J. Biomech. Eng. 125(2):280–287, 2003.
Schievano, S., K. S. Kunzelman, M. A. Nicosia, R. P. Cochran, D. R. Einstein, S. Khambadkone, and P. Bonhoeffer. Percutaneous mitral valve dilatation: single balloon versus double balloon. A finite element study. J. Heart Valve Dis., 18:28–34, 2009.
Stevanella, M., F. Maffessanti, C. A. Conti, E. Votta, A. Arnoldi, M. Lombardi, O. Parodi, E. G. Caiani, and A. Redaelli. Mitral valve patient-specific finite element modeling from cardiac mri: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2(2):66–76, 2011.
van Rijk-Zwikker, G. L., B. J. Delemarre, and H. A. Huysmans. Mitral valve anatomy and morphology: relevance to mitral valve replacement and valve reconstruction. J. Card. Surg. 9(2 Suppl):255–261, 1994.
Votta, E., E. G. Caiani, F. Veronesi, M. Soncini, F. M. Motevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. Ser. A 366(1879):3411–3434, 2008.
Votta, E., T. B. Le, M. Stevanella, L. Fusini, E. G. Caiani, A. Redaelli, and F. Sotiropoulos. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2):217–228, 2013.
Wenk, J. F., Z. Zhang, G. Cheng, D. Malhotra, G. A.-Bolton, M. Burger, T. Suzuki, D. A. Saloner, A. W. Wallace, J. M. Guccione, and M. B. Ratclifee. First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89:1546–1554, 2010.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4