A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-015-1383-7 below:

Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness

  • Avrahami, I. and M. Gharib. Effects of membrane stiffening on focal-adhesion bonding under steady and unsteady conditions. In: IEEE Bio Micro and Nanosystems Conference, 2006. BMN’06 2006.

  • Bakewell, D. J., N. Vergara-Irigaray, and D. Holmes. Dielectrophoresis of Biomolecules. JSM Nanotechnol. Nanomed. 1(1):1003, 2013.

    Google Scholar 

  • Berger, G., D. W. Hartwell, and D. D. Wagner. P-Selectin and platelet clearance. Blood 92(11):4446–4452, 1998.

    CAS  PubMed  Google Scholar 

  • Berman, C. L., et al. A platelet alpha granule membrane-protein that is associated with the plasma-membrane after activation—characterization and subcellular-localization of platelet activation-dependent granule-external membrane-protein. J. Clin. Invest. 78(1):130–137, 1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bluestein, D., et al. Device thrombogenicity emulation: A novel methodology for optimizing the thromboresistance of cardiovascular devices (vol 46, pg 334, 2012). J. Biomech. 46(7):1413, 2013.

    Article  Google Scholar 

  • Chen, J., et al. Electrodeformation for single cell mechanical characterization. J. Micromech. Microeng. 21(5):054012, 2011.

    Article  Google Scholar 

  • Chen, J., et al. Electrodeformation for Single Cell Mechanical Characterization. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (Mems), pp. 1119-1122, 2011.

  • Cheng, Q., et al. PDMS elastic micropost arrays for studying vascular smooth muscle cells. Sens. Actuators B-Chem. 188:1055–1063, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farndale, R. W. Collagen-induced platelet activation. Blood Cells Mol. Dis. 36(2):162–165, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ferry, J. D. Viscoelastic Properties of Polymers. New York: Wiley, p. 482, 1961.

    Google Scholar 

  • Gao, J., et al. Hybrid electrokinetic manipulation in high-conductivity media. Lab Chip 11(10):1770–1775, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guck, J., et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88(5):3689–3698, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Q., S. Park, and H. S. Ma. Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip 12(15):2687–2695, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Haga, J. H., et al. Quantification of the passive mechanical properties of the resting platelet. Ann. Biomed. Eng. 26(2):268–277, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Haghi, M., D. Traini, L. G. Wood, B. Oliver, P. M. Young, and W. Chrzanowski. A “soft spot” for drug transport: modulation of cell stiffness using fatty acids and its impact on drug transport in lung model. J. Mater. Chem. B 3:2583–2589, 2015.

    Article  CAS  Google Scholar 

  • Hartwig, J. H. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol. 118(6):1421–1442, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Hou, H. W., et al. Deformability based cell margination - A simple microfluidic design for malarial infected red blood cell filtration. 6th World Congress of. Biomechanics 31:1671–1674, 2010.

    Google Scholar 

  • Hsulin, S. C., et al. a platelet membrane-protein expressed during platelet activation and secretion—studies using a monoclonal-antibody specific for thrombin-activated platelets. J. Biol. Chem. 259(14):9121–9126, 1984.

    CAS  Google Scholar 

  • Hu, X. Y., et al. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA 102(44):15757–15761, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272(1):64–70, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, J. R. Platelet activation and atherothrombosis. New Engl. J. Med. 358(15):1638, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng.-Trans. ASME 125(3):334–341, 2003.

    Article  Google Scholar 

  • Kroll, M. H., et al. Platelets and shear stress. Blood 88(5):1525–1541, 1996.

    CAS  PubMed  Google Scholar 

  • Kuwahara, M., et al. Platelet shape changes and adhesion under high shear flow. Arterioscler. Thromb. Vasc. Biol. 22(2):329–334, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. W., et al. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest. Ophthalmol. Vis. Sci. 50(12):5859–5866, 2009.

    Article  PubMed  Google Scholar 

  • Leung, S. L., et al. Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques. Sens. Actuators A-Phys. 178:32–39, 2012.

    Article  CAS  Google Scholar 

  • Lim, C. T., E. H. Zhou, and S. T. Quek. Mechanical models for living cells—A review. J. Biomech. 39(2):195–216, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lincoln, B., et al. Deformability-based flow cytometry. Cytometry Part A 59A(2):203–209, 2004.

    Article  Google Scholar 

  • Lord, M. S., et al. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials 32(28):6655–6662, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H., et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76(18):5257–5264, 2004.

    Article  CAS  PubMed  Google Scholar 

  • MacQueen, L. A., M. D. Buschmann, and M. R. Wertheimer. Mechanical properties of mammalian cells in suspension measured by electro-deformation. J. Micromech. Microeng. 20(6):065007, 2010.

    Article  Google Scholar 

  • Martinez, E. J., Y. Lanir, and S. Einav. Effects of contact-induced membrane stiffening on platelet adhesion. Biomech. Model. Mechanobiol. 2(3):157–167, 2004.

    Article  PubMed  Google Scholar 

  • Maugis, D., and M. Barquins. Fracture mechanics and adherence of viscoelastic bodies. J. Phys. D-Appl. Phys. 11(14):1989–2023, 1978.

    Article  Google Scholar 

  • Morgan, H., M. P. Hughes, and N. G. Green. Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77(1):516–525, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needham, D., and R. M. Hochmuth. Rapid flow of passive neutrophils into a 4 Mu-M pipette and measurement of cytoplasmic viscosity. J. Biomech. Eng.-Trans. ASME 112(3):269–276, 1990.

    Article  CAS  Google Scholar 

  • Neuman, K. C., and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5(6):491–505, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobili, M., et al. Platelet activation due to hemodynamic shear stresses: Damage accumulation model and comparison to in vitro measurements. ASAIO J. 54(1):64–72, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, Y., et al. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. USA 107(15):6731–6736, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqua, A., et al. Large-scale simulations of fluctuating biological membranes. J. Chem. Phys. 132(15):154107, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohl, H. A. The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22(7):869–871, 1951.

    Article  CAS  Google Scholar 

  • Pohl, H.A., Dielectrophoresis: applications to the characterization and separation of cells. In: Methods of Cell Separation, N. Catsimpoolas, ed., New York: CRC Press, 1977.

  • Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Vol. 80. Cambridge: University Press Cambridge, 1978.

    Google Scholar 

  • Pohl, H. A., and J. S. Crane. Dielectrophoresis of cells. Biophys. J. 11(9):711, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommer, M. S., et al. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29(6):1213–1218, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Radmacher, M., et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70(1):556–567, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos, A., et al. AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D-Appl. Phys. 31(18):2338–2353, 1998.

    Article  CAS  Google Scholar 

  • Rand, R. P. Mechanical properties of the red cell membrane. Ii. Viscoelastic breakdown of the membrane. Biophys. J. 4:303–316, 1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert, O., M. J. B. Ritchie, and Paul Hansma. Plasticity and toughness in bone. Phys. Today 62(2):41–47, 2009.

    Google Scholar 

  • Santos, S. F. D., and J. D. A. Rodrigues. Correlation between fracture toughness, work of fracture and fractal dimensions of Alumina-mullite-zirconia composites. Mater. Res. 6(2):219–226, 2003.

    Article  Google Scholar 

  • Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial-cells exposed to shear-stress. Arteriosclerosis 7(3):276–286, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Sheriff, J., et al. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38(4):1442–1450, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheriff, J., et al. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices (vol 41, pg 1279, 2013). Ann. Biomed. Eng. 41(12):2712, 2013.

    Article  Google Scholar 

  • Sims, P. J., et al. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem. 263(34):18205–18212, 1988.

    CAS  PubMed  Google Scholar 

  • Sun, M., et al. The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J. Cell Sci. 120(Pt 13):2223–2231, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tran, P. L., Valerio, L., Yamaguchi, J., Brengle, W., DeCook, T.E., Hutchinson, M., Sen, N., Bluestein, D., Slepian, M.J. Dimethyl Sulfoxide: A New Nemesis of Shear-Induced Platelet Activation. In: Nanoengineering for Medicine and Biology. 2014. San Francisco, CA.

  • Valerio, L. Multi-Perspective Investigation of the Effectiveness of Anti-Thrombotic Treatments in Association with Shear-Mediated Platelet Activation, 2014, Politechnico di Milano, Milan, Italy (unpublished Doctoral Dissertation).

  • Valero, A., T. Braschler, and P. Renaud. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab Chip 10(17):2216–2225, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Van Vliet, K. J., G. Bao, and S. Suresh. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51(19):5881–5905, 2003.

    Article  Google Scholar 

  • Vieira-de-Abreu, A., et al. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin. Immunopathol. 34(1):5–30, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. J., X. B. Wang, and P. R. C. Gascoyne. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J. Electrostat. 39(4):277–295, 1997.

    Article  Google Scholar 

  • Wang, X. B., et al. Dielectrophoretic manipulation of particles. IEEE Trans. Ind. Appl. 33(3):660–669, 1997.

    Article  Google Scholar 

  • Ward, M. D., and D. A. Hammer. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys. J. 64(3):936–959, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, P. K., W. Tan, and C. M. Ho. Cell relaxation after electrodeformation: effect of latrunculin A on cytoskeletal actin. J. Biomech. 38(3):529–535, 2005.

    Article  PubMed  Google Scholar 

  • Xu, W. W., et al. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. Plos One 7(10):e46609, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, J., et al. Desensitization of DMSO-treated platelets to common agonists via membrane modulation. Faseb J. 28(1):598, 2014.

    Google Scholar 

  • Zhang, J., et al. Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation. Arch. Biochem. Biophys. 471(2):240–248, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1):401–420, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., et al. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 7(4):552–574, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4