A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-015-1382-8 below:

High Field Sodium MRI Assessment of Stem Cell Chondrogenesis in a Tissue-Engineered Matrix

References
  1. Amini, A. R., D. J. Adams, C. T. Laurencin, and S. P. Nukavarapu. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng. Part A 18(13–14):1376–1388, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5):363–408, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Amini A.R. and S.P. Nukavarapu. Optimal scaffold design and effective progenitor cell identification for the regeneration of vascularized bone. In: 2011 Eng Med Biol Soc Conf, IEEE; 2011 Aug 30–Sept 3; Boston, MA.

  4. Amini, A. R., and S. P. Nukavarapu. Oxygen-tension controlled matrices for enhanced osteogenic cell survival and performance. Ann. Biomed. Eng. 42(6):1261–1270, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Bashir, A., M. L. Gray, J. Hartke, and D. Burstein. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn. Reson. Med. 41(5):857–865, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Binks, D. A., R. J. Hodgson, M. E. Ries, R. J. Foster, S. W. Smye, D. McGonagle, and A. Radjenovic. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br. J. Radiol. 86(1023):20120163, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borthakur, A., E. Mellon, S. Niyogi, W. Witschey, J. B. Kneeland, and R. Reddy. Sodium and T-1 rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 19(7):781–821, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borthakur, A., E. M. Shapiro, J. Beers, S. Kudchodkar, J. B. Kneeland, and R. Reddy. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr. Cartil. 8(4):288–293, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. J. Bone Joint Surg. Am. 79A(4):600–611, 1997.

    Google Scholar 

  10. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477–486, 1998.

    CAS  PubMed  Google Scholar 

  11. Centers for Disease Control and P. 2009. Prevalence and most common causes of disability among adults–United States, 2005. Morbidity and mortality weekly report 58:421–426.

  12. Detterline A.J., S. Goldberg, B.R. Bach Jr., and B.J. Cole. Treatment options for articular cartilage defects of the knee. Orthop Nurs. 24(5):361–366; quiz 7–8, 2005.

  13. Dorcemus D.L. and S.P. Nukavarapu. Novel and Unique Matrix Design for Osteochondral Tissue Engineering. 2013 MRS Fall meeting, Materials Research Society; 2013 Dec 1–6; Boston, MA.

  14. Esko J.D., K. Kimata, and U. Lindahl. Proteoglycans and Sulfated Glycosaminoglycans. In: Essentials of Glycobiology. 2nd ed., edited by A.Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, et al. Cold Spring Harbor (NY) 2009.

  15. Guo, J. F., G. W. Jourdian, and D. K. Maccallum. Culture and growth-characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19(2–4):277–297, 1989.

    Article  CAS  PubMed  Google Scholar 

  16. Hani, A. F., D. Kumar, A. S. Malik, and R. Razak. Physiological assessment of in vivo human knee articular cartilage using sodium MR imaging at 1.5 T. Magn. Reson. Imaging 31(7):1059–1067, 2013.

    Article  PubMed  Google Scholar 

  17. Hwang, N. S., M. S. Kim, S. Sampattavanich, J. H. Baek, Z. Zhang, and J. Elisseeff. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24(2):284–291, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang, N. S., S. Varghese, and J. Elisseeff. Cartilage tissue engineering: directed differentiation of embryonic stem cells in three-dimensional hydrogel culture. Methods Mol. Biol. 407:351–373, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Igwe, J. C., P. E. Mikael, and S. P. Nukavarapu. Design, fabrication and in vitro evaluation of novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J. Tissue Eng. Regen. Med. 8(2):131–142, 2014.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, T., S. P. Nukavarapu, M. Deng, E. Jabbarzadeh, M. D. Kofron, S. B. Doty, W. I. Abdel-Fattah, and C. T. Laurencin. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater. 6(9):3457–3470, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, K., S. Zhu, M. S. Tremblay, J. N. Payette, J. Wang, L. C. Bouchez, S. Meeusen, A. Althage, C. Y. Cho, X. Wu, and P. G. Schultz. A stem cell-based approach to cartilage repair. Science 336(6082):717–721, 2012.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, T. K., B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, and J. H. Elisseeff. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartil. 11(9):653–664, 2003.

    Article  PubMed  Google Scholar 

  23. Kotecha, M., D. Klatt, and R. L. Magin. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. Tissue Eng. Part B 19(6):470–484, 2013.

    Article  CAS  Google Scholar 

  24. Kotecha, M., S. Ravindran, T. M. Schmid, A. Vaidyanathan, A. George, and R. L. Magin. Application of sodium triple-quantum coherence NMR spectroscopy for the study of growth dynamics in cartilage tissue engineering. NMR Biomed. 26(6):709–717, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kotecha M., T.M. Schmid, B. Odintsov, and R.L. Magin. Reduction of water diffusion coefficient with increased engineered cartilage matrix growth observed using MRI. Engineering in Medicine and Biology Society (EMBC), 36th Annual International Conference of the IEEE; 26–30 Aug. 2014; Chicago: IEEE 2014. 3913–3916, 2014.

  26. Lesperance, L. M., M. L. Gray, and D. Burstein. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J. Orthop. Res. 10(1):1–13, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Lubar, D., P. H. White, L. F. Callahan, R. W. Chang, C. G. Helmick, D. R. Lappin, A. Melnick, R. W. Moskowitz, E. Odam, J. Sacks, S. B. Toal, and M. B. Waterman. A national public health agenda for osteoarthritis 2010. Semin. Arthritis Rheum. 39:323–326, 2010.

    Article  PubMed  Google Scholar 

  28. Madelin, G., J. Babb, D. Xia, G. Chang, S. Krasnokutsky, S. B. Abramson, A. Jerschow, and R. R. Regatte. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 268(2):481–491, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miyata, S., T. Numano, K. Homma, T. Tateishi, and T. Ushida. Feasibility of noninvasive evaluation of biophysical properties of tissue-engineered cartilage by using quantitative MRI. J. Biomech. 40(13):2990–2998, 2007.

    Article  PubMed  Google Scholar 

  30. Mourao, P. A. Proteoglycans, glycosaminoglycans and sulfated polysaccharides from connective tissues. Mem. Inst. Oswaldo Cruz 86(Suppl 3):13–22, 1991.

    Article  PubMed  Google Scholar 

  31. Moutos, F. T., and F. Guilak. Composite scaffolds for cartilage tissue engineering. Biorheology. 45(3–4):501–512, 2008.

    PubMed  PubMed Central  Google Scholar 

  32. Nukavarapu S.P., C.T. Laurencin, A.R. Amini, and D.L. Dorcemus. Gradient Porous Scaffolds. Patent US 20140178455 A1. 2014.

  33. Nukavarapu, S. P., and D. L. Dorcemus. Osteochondral tissue engineering: current strategies and challenges. Biotechnol. Adv. 31(5):706–721, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Pothirajan P., D.L. Dorcemus, S.P. Nukavarapu, and M. Kotecha. True MRI assessment of stem cell chondrogenesis in a tissue engineered matrix. In: Ying L, editor. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE; Aug 26–30; Chicago: IEEE; 2014. pp. 3933–3936, 2014.

  35. Shapiro, E. M., A. Borthakur, A. Gougoutas, and R. Reddy. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn. Reson. Med. 47(2):284–291, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wheaton, A. J., A. Borthakur, E. M. Shapiro, R. R. Regatte, S. V. S. Akella, J. B. Kneeland, and R. Reddy. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 231(3):900–905, 2004.

    Article  PubMed  Google Scholar 

  37. Yin, Z. Magnetic resonance characterization of tissue engineered cartilage via changes in relaxation times, diffusion coefficient, and shear modulus. Crit. Rev. Biomed. Eng. 42(2):137–191, 2014.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4