Amini, A. R., D. J. Adams, C. T. Laurencin, and S. P. Nukavarapu. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng. Part A 18(13–14):1376–1388, 2012.
Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5):363–408, 2012.
Amini A.R. and S.P. Nukavarapu. Optimal scaffold design and effective progenitor cell identification for the regeneration of vascularized bone. In: 2011 Eng Med Biol Soc Conf, IEEE; 2011 Aug 30–Sept 3; Boston, MA.
Amini, A. R., and S. P. Nukavarapu. Oxygen-tension controlled matrices for enhanced osteogenic cell survival and performance. Ann. Biomed. Eng. 42(6):1261–1270, 2014.
Bashir, A., M. L. Gray, J. Hartke, and D. Burstein. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn. Reson. Med. 41(5):857–865, 1999.
Binks, D. A., R. J. Hodgson, M. E. Ries, R. J. Foster, S. W. Smye, D. McGonagle, and A. Radjenovic. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br. J. Radiol. 86(1023):20120163, 2013.
Borthakur, A., E. Mellon, S. Niyogi, W. Witschey, J. B. Kneeland, and R. Reddy. Sodium and T-1 rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 19(7):781–821, 2006.
Borthakur, A., E. M. Shapiro, J. Beers, S. Kudchodkar, J. B. Kneeland, and R. Reddy. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr. Cartil. 8(4):288–293, 2000.
Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. J. Bone Joint Surg. Am. 79A(4):600–611, 1997.
Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477–486, 1998.
Centers for Disease Control and P. 2009. Prevalence and most common causes of disability among adults–United States, 2005. Morbidity and mortality weekly report 58:421–426.
Detterline A.J., S. Goldberg, B.R. Bach Jr., and B.J. Cole. Treatment options for articular cartilage defects of the knee. Orthop Nurs. 24(5):361–366; quiz 7–8, 2005.
Dorcemus D.L. and S.P. Nukavarapu. Novel and Unique Matrix Design for Osteochondral Tissue Engineering. 2013 MRS Fall meeting, Materials Research Society; 2013 Dec 1–6; Boston, MA.
Esko J.D., K. Kimata, and U. Lindahl. Proteoglycans and Sulfated Glycosaminoglycans. In: Essentials of Glycobiology. 2nd ed., edited by A.Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, et al. Cold Spring Harbor (NY) 2009.
Guo, J. F., G. W. Jourdian, and D. K. Maccallum. Culture and growth-characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19(2–4):277–297, 1989.
Hani, A. F., D. Kumar, A. S. Malik, and R. Razak. Physiological assessment of in vivo human knee articular cartilage using sodium MR imaging at 1.5 T. Magn. Reson. Imaging 31(7):1059–1067, 2013.
Hwang, N. S., M. S. Kim, S. Sampattavanich, J. H. Baek, Z. Zhang, and J. Elisseeff. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24(2):284–291, 2006.
Hwang, N. S., S. Varghese, and J. Elisseeff. Cartilage tissue engineering: directed differentiation of embryonic stem cells in three-dimensional hydrogel culture. Methods Mol. Biol. 407:351–373, 2007.
Igwe, J. C., P. E. Mikael, and S. P. Nukavarapu. Design, fabrication and in vitro evaluation of novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J. Tissue Eng. Regen. Med. 8(2):131–142, 2014.
Jiang, T., S. P. Nukavarapu, M. Deng, E. Jabbarzadeh, M. D. Kofron, S. B. Doty, W. I. Abdel-Fattah, and C. T. Laurencin. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater. 6(9):3457–3470, 2010.
Johnson, K., S. Zhu, M. S. Tremblay, J. N. Payette, J. Wang, L. C. Bouchez, S. Meeusen, A. Althage, C. Y. Cho, X. Wu, and P. G. Schultz. A stem cell-based approach to cartilage repair. Science 336(6082):717–721, 2012.
Kim, T. K., B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, and J. H. Elisseeff. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartil. 11(9):653–664, 2003.
Kotecha, M., D. Klatt, and R. L. Magin. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. Tissue Eng. Part B 19(6):470–484, 2013.
Kotecha, M., S. Ravindran, T. M. Schmid, A. Vaidyanathan, A. George, and R. L. Magin. Application of sodium triple-quantum coherence NMR spectroscopy for the study of growth dynamics in cartilage tissue engineering. NMR Biomed. 26(6):709–717, 2013.
Kotecha M., T.M. Schmid, B. Odintsov, and R.L. Magin. Reduction of water diffusion coefficient with increased engineered cartilage matrix growth observed using MRI. Engineering in Medicine and Biology Society (EMBC), 36th Annual International Conference of the IEEE; 26–30 Aug. 2014; Chicago: IEEE 2014. 3913–3916, 2014.
Lesperance, L. M., M. L. Gray, and D. Burstein. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J. Orthop. Res. 10(1):1–13, 1992.
Lubar, D., P. H. White, L. F. Callahan, R. W. Chang, C. G. Helmick, D. R. Lappin, A. Melnick, R. W. Moskowitz, E. Odam, J. Sacks, S. B. Toal, and M. B. Waterman. A national public health agenda for osteoarthritis 2010. Semin. Arthritis Rheum. 39:323–326, 2010.
Madelin, G., J. Babb, D. Xia, G. Chang, S. Krasnokutsky, S. B. Abramson, A. Jerschow, and R. R. Regatte. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 268(2):481–491, 2013.
Miyata, S., T. Numano, K. Homma, T. Tateishi, and T. Ushida. Feasibility of noninvasive evaluation of biophysical properties of tissue-engineered cartilage by using quantitative MRI. J. Biomech. 40(13):2990–2998, 2007.
Mourao, P. A. Proteoglycans, glycosaminoglycans and sulfated polysaccharides from connective tissues. Mem. Inst. Oswaldo Cruz 86(Suppl 3):13–22, 1991.
Moutos, F. T., and F. Guilak. Composite scaffolds for cartilage tissue engineering. Biorheology. 45(3–4):501–512, 2008.
Nukavarapu S.P., C.T. Laurencin, A.R. Amini, and D.L. Dorcemus. Gradient Porous Scaffolds. Patent US 20140178455 A1. 2014.
Nukavarapu, S. P., and D. L. Dorcemus. Osteochondral tissue engineering: current strategies and challenges. Biotechnol. Adv. 31(5):706–721, 2013.
Pothirajan P., D.L. Dorcemus, S.P. Nukavarapu, and M. Kotecha. True MRI assessment of stem cell chondrogenesis in a tissue engineered matrix. In: Ying L, editor. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE; Aug 26–30; Chicago: IEEE; 2014. pp. 3933–3936, 2014.
Shapiro, E. M., A. Borthakur, A. Gougoutas, and R. Reddy. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn. Reson. Med. 47(2):284–291, 2002.
Wheaton, A. J., A. Borthakur, E. M. Shapiro, R. R. Regatte, S. V. S. Akella, J. B. Kneeland, and R. Reddy. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 231(3):900–905, 2004.
Yin, Z. Magnetic resonance characterization of tissue engineered cartilage via changes in relaxation times, diffusion coefficient, and shear modulus. Crit. Rev. Biomed. Eng. 42(2):137–191, 2014.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4