Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546–553, 2009.
Bakker, A. D., M. Joldersma, J. Klein-Nulend, and E. H. Burger. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am. J. Physiol. Endocrinol. Metab. 285:E608–E613, 2003.
Birmingham, E., J. A. Grogan, G. L. Niebur, L. M. McNamara, and P. E. McHugh. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann. Biomed. Eng. 41:814–826, 2013.
Birmingham, E., T. C. Kreipke, E. B. Dolan, T. R. Coughlin, P. Owens, L. M. McNamara, G. L. Niebur, and P. E. McHugh. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann. Biomed. Eng. 2014. doi:10.1007/s10439-014-1135-0.
Birmingham, E., G. L. Niebur, P. E. McHugh, G. Shaw, F. P. Barry, and L. M. McNamara. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell Mater. 23:13–27, 2012.
Bonewald, L. F. Osteocytes as dynamic multifunctional cells. Ann. N. Y. Acad. Sci. 1116:281–290, 2007.
Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.
Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.
Carter, D. R., D. P. Fyhrie, and R. T. Whalen. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomech. 20:785–794, 1987.
Cartmell, S. H., B. D. Porter, A. J. García, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.
Case, N., B. Sen, J. A. Thomas, M. Styner, Z. Xie, C. R. Jacobs, and J. Rubin. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 88:189–197, 2011.
Chen, J. C., and C. R. Jacobs. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res. Ther. 4:107, 2013.
Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45:2222–2229, 2012.
David, V., A. Guignandon, A. Martin, L. Malaval, M.-H. Lafage-Proust, A. Rattner, V. Mann, B. Noble, D. B. Jones, and L. Vico. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. A 14:117–126, 2008.
Davies, C. M., D. B. Jones, M. J. Stoddart, K. Koller, E. Smith, C. W. Archer, and R. G. Richards. Mechanically loaded ex vivo bone culture system “Zetos”: systems and culture preparation. Eur. Cell Mater. 11:57–75, 2006; (discussion 75, 2006).
Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model. Mechanobiol. 7:191–202, 2008.
Endres, S., M. Kratz, S. Wunsch, and D. B. Jones. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders. J. Musculoskelet. Neuronal Interact. 9:173–183, 2009.
Fritton, S. P., K. J. McLeod, and C. T. Rubin. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33:317–325, 2000.
Frost, H. M. Bone, “mass” and the “mechanostat”: a proposal. Anat. Rec. 219:1–9, 1987.
Garman, R., G. Gaudette, L.-R. Donahue, C. Rubin, and S. Judex. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J. Orthop. Res. 25:732–740, 2007.
Govey, P. M., A. E. Loiselle, and H. J. Donahue. Biophysical regulation of stem cell differentiation. Curr. Osteoporos. Rep. 11:83–91, 2013.
Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978–1991, 2008.
Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.
Jones, D. B., E. Broeckmann, T. Pohl, and E. L. Smith. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur. Cell Mater. 5:48–59, 2003; (discussion 59–60, 2003).
Kajimura, D., R. Paone, J. J. Mann, and G. Karsenty. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo. Mol. Metab. 3:770–777, 2014.
Keaveny, T. M., E. F. Morgan, G. L. Niebur, and O. C. Yeh. Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3:307–333, 2001.
Lambers, F. M., K. Koch, G. Kuhn, D. Ruffoni, C. Weigt, F. A. Schulte, and R. Müller. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone. doi:10.1016/j.bone.2013.04.016.
Lukas, C., D. Ruffoni, F. M. Lambers, F. A. Schulte, G. Kuhn, P. Kollmannsberger, R. Weinkamer, and R. Müller. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56:55–60, 2013.
Mann, V., C. Huber, G. Kogianni, D. Jones, and B. Noble. The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J. Musculoskelet. Neuronal Interact. 6:408–417, 2006.
Metzger, T. A., T. C. Kreipke, T. J. Vaughan, L. McNamara, and G. L. Niebur. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J. Biomech. Eng. 2014. doi:10.1115/1.4028985.
Mohsin, S., F. J. O’Brien, and T. C. Lee. Microcracks in compact bone: a three-dimensional view. J. Anat. 209:119–124, 2006.
Mosley, J. R. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J. Rehabil. Res. Dev. 37:189–199, 2000.
Nauman, E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, and D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J. Appl. Physiol. 90:1849–1854, 2001.
Parfitt, A. M., M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche, P. J. Meunier, S. M. Ott, and R. R. Recker. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J. Bone Miner. Res. 2:595–610, 1987.
DS SIMULIA. Abaqus 6.12 theory manual. Providence, RI: DS SIMULIA Corp., 2012.
Qin, Y.-X., and H. Lam. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J. Biomech. 42:140–145, 2009.
Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10:12–24, 2010.
Recker, R. R., D. B. Kimmel, A. M. Parfitt, K. M. Davies, N. Keshawarz, and S. Hinders. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J. Bone Miner. Res. 3:133–144, 1988.
Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005–1014, 2008.
Schaffler, M. B., W.-Y. Cheung, R. Majeska, and O. Kennedy. Osteocytes: master orchestrators of bone. Calcif. Tissue Int. 2013. doi:10.1007/s00223-013-9790-y.
Schulte, F. A., A. Zwahlen, F. M. Lambers, G. Kuhn, D. Ruffoni, D. Betts, D. J. Webster, and R. Müller. Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data. Bone 52:485–492, 2013.
Vaughan, T. J., M. Voisin, G. L. Niebur, and L. M. McNamara. Multiscale modeling of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis. J. Biomech. Eng. 2015. doi:10.1115/1.4028986.
Verbruggen, S. W., T. J. Vaughan, and L. M. McNamara. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J. R. Soc. Interface 9:2735–2744, 2012.
Vivanco, J., S. Garcia, H. L. Ploeg, G. Alvarez, D. Cullen, and E. L. Smith. Apparent elastic modulus of ex vivo trabecular bovine bone increases with dynamic loading. Proc. Inst. Mech. Eng. H 227:904–912, 2013.
Webster, D., E. Wasserman, M. Ehrbar, F. Weber, I. Bab, and R. Müller. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype. Biomech. Model. Mechanobiol. 9:737–747, 2010.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4