Dobkin, B. H. Clinical practice. Rehabilitation after stroke. N Engl J Med 352:1677–1684, 2005.
Hill, K., P. Ellis, J. Bernhardt, P. Maggs, and S. Hull. Balance and mobility outcomes for stroke patients: a comprehensive audit. Aust J Physiother 43:173–180, 1997.
Dobkin, B. H. An overview of treadmill locomotor training with partial body weight support: a neurophysiological sound approach whose time has come for randomized clinical trials. Neurorehabil Neural Repair 13:157–165, 1999.
Barbeau, H., and S. Rossignol. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 26(412):84–95, 1987.
Rossignol, S., R. Dubuc, and J. P. Gossard. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 86:89–154, 2006.
Barbeau, H., M. Danakas, and B. Arsenault. The effects of locomotor training in spinal cord injured subjects: a preliminary study. Restor Neurol Neurosci. 1(5):81–84, 1993.
Colombo, G., M. Joerg, R. Schreier, and V. Dietz. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 37:693–700, 2000.
Nilsson, L., J. Carlsson, A. Danielsson, A. Fugl-Meyer, K. Hellström, L. Kristensen, B. Sjölund, K. S. Sunnerhagen, and G. Grimby. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 15:515–527, 2001.
Colombo, G., M. Wirz, and V. Dietz. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39:252–255, 2001.
Hesse, S., and D. Uhlenbrock. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 37:701–708, 2000.
Freivogel, S., J. Mehrholz, T. Husak-Sotomayor, and D. Schmalohr. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 22:625–632, 2008.
Hesse, S., A. Waldner, and C. Tomelleri. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7:30, 2010.
Hesse, S., M. Malezic, A. Schaffrin, and K. H. Mauritz. Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med 27:199–204, 1995.
Billinger, S. A., R. Arena, J. Bernhardt, J. J. Eng, B. A. Franklin, C. M. Johnson, M. MacKay-Lyons, R. F. Macko, G. E. Mead, E. J. Roth, M. Shaughnessy, and A. Tang. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 45:2532–2553, 2014.
Schmidt, H., S. Hesse, R. Bernhardt, and J. Krüger. HapticWalker a novel haptic foot device. ACM Transactions on Applied Perception 2:166–180, 2005.
Khanna, I., A. Roy, M. M. Rodgers, H. I. Krebs, R. M. Macko, and L. W. Forrester. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil. 7:23, 2010.
Fleerkotte, B. M., B. Koopman, J. H. Buurke, E. H. van Asseldonk, H. van der Kooij, and J. S. Rietman. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J. Neuroeng. Rehabil. 11:26, 2014.
Fisher, S., L. Lucas, and T. A. Thrasher. Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil. 18(3):269–276, 2011.
Wu, M., T. G. Hornby, J. M. Landry, H. Roth, and B. D. Schmit. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 33:256–260, 2011.
Tefertiller, C., B. Pharo, N. Evans, and P. Winchester. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 48:387–416, 2011.
Williams, G. R., J. G. Jiang, D. B. Matchar, and G. P. Samsa. Incidence and occurrence of total (first-ever and recurrent) stroke. Stroke 30:2523–2528, 1999.
Bohannon, R. W., M. G. Horton, and J. B. Wikholm. Importance of four variables of walking to patients with stroke. Int J Rehab Res 14:246–250, 1991.
Wade, D. T., V. A. Wood, A. A. Heller, J. Maggs, and H. R. Langton. Walking after stroke. Measurement and recovery over the first 3 months. Scand. J. Rehabil. Med. 19:25–30, 1987.
Mehrholz, J., C. Werner, J. Kugler, and M. Pohl. Electrome-chanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 4: Art no. CD006185, 2007.
Chang, W. H., and Y. H. Kim. Robot-assisted Therapy in Stroke Rehabilitation. Journal of Stroke 15:174–181, 2013.
Werner, C., S. Von Frankenberg, T. Treig, et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 33:2895–2901, 2002.
Tong, R. K., M. F. Ng, and L. S. Li. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 87:1298–1304, 2006.
Pohl, M., C. Werner, M. Holzgraefe, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 21:17–27, 2007.
Peurala, S. H., O. Airaksinen, P. Huuskonen, P. Jakala, M. Juhakoski, K. Sandell, et al. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med 41:166–173, 2009.
Morone, G., M. Bragoni, M. Iosa, D. De Angelis, V. Venturiero, P. Coiro, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair 25:636–644, 2011.
Hesse, S., C. Tomelleri, A. Bardeleben, C. Werner, and A. Waldner. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. J Rehabil Res Dev. 49(4):613–622, 2012.
Husemann, B., F. Müller, C. Krewer, et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 38:349–354, 2007.
Mayr, A., M. Kofler, E. Quirbach, et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 21:307–314, 2007.
Hidler, J., D. Nichols, M. Pelliccio, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 23:5–13, 2009.
Schwartz, I., A. Sajin, I. Fisher, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R. 1:516–523, 2009.
Chang, W. H., M. S. Kim, J. P. Huh, P. K. Lee, and Y. H. Kim. Effects of ro-bot-assisted gait training on cardiopulmonary fitness in sub-acute stroke patients: a randomized controlled study. Neurore-habil Neural Repair 26:318–324, 2012.
Peurala, S. H., I. M. Tarkka, K. Pitkänen, and J. Sivenius. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil. 86:1557–1564, 2005.
Dias, D., J. Lains, A. Pereira, R. Nunes, J. Caldas, C. Amaral, et al. Can we improve gait skills in chronic hemiplegics? A ran-domised control trial with gait trainer. Eura Medicophys 43:499–504, 2007.
Hornby, T. G., D. D. Campbell, J. H. Kahn, et al. Enhanced gait-related improvements after thera-pist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 39:1786–1792, 2008.
Jung, K. H., H. G. Ha, H. J. Shin, S. H. Ohn, D. H. Sung, P. K. W. Lee, et al. Effects of Robot-assisted Gait Therapy on Locomotor Re-covery in Stroke Patients. J Korean Acad Rehabil Med 32:258–266, 2008.
Westlake, K. P., and C. Patten. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 6:18, 2009.
Holden, M. K., K. M. Gill, and M. R. Magliozzi. Gait assessment for neurologically impaired patients. Phys. Ther. 66:1530–1539, 1986.
Brooks, D., A. M. Davis, and G. Naglie. Validity of 3 physical performance measures in inpatient geriatric rehabilitation. Arch Phys Med Rehabil 87:105–110, 2006.
Mehrholz, J., B. Elsner, C. Werner, J. Kugler, and M. Pohl. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 7. Art. No.: CD006185, 2013. doi:10.1002/14651858.CD006185.pub3.
Kraus, J. F., and D. L. McArthur. Epidemiologic aspects of brain injury. Neurol. Clin. 14:435–450, 1996. Review
Thurman, D. J., V. Coronado, and A. Selassie. The epidemyology of TBI: implication for public health. In: Brain Injury Medicine: Principles and Practice, edited by N. D. Zasler, D. I. Katz, R. D. Zafonte. New York: Demos Medical Publishers, 2007, pp. 45–55.
Williams, G., M. E. Morris, A. Schache, and P. R. McCrory. Incidence of gait abnormalities after traumatic brain injury. Arch Phys Med Rehabil 90:587–593, 2009.
Esquenazi, A., and M. Talaty. Gait analysis, technology and clinical applications. In: Physical Medicine and Rehabilitation4th, edited by R. L. Braddom. Philadelphia, PA: Elsevier, 2011, pp. 99–116.
Freivogel, S., J. Mehrholz, T. Husak-Sotomayor, and D. Schmalohr. Gait training with the newly developed ‘LokoHelp’-system is feasible for nonambulatory patients after stroke, spinal cord and brain injury. A feasibilitystudy. Brain Inj 22:625–632, 2008.
Esquenazi, A., S. Lee, A. T. Packel, and L. Braitman. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PM R 5:280–290, 2013.
Wyndaele, M., and J. J. Wyndaele. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44:523–529, 2006.
Ackery, A., C. Tator, and A. Krassioukov. A global perspective on spinal cord injury epidemiology. J Neurotrauma 21:1355–1370, 2004.
Williams, G., M. E. Morris, A. Schache, and P. R. McCrory. Incidence of gait abnormalities after traumatic brain injury. Arch. Phys. Med. Rehabil. 90(4):587–593, 2009.
Waters, R. L., R. H. Adkins, and J. S. Yakura. Motor and sensory recovery following incomplete paraplegia. Arch Phys Med Rehabil 75:67–72, 1994.
Dobkin, B. H., D. Apple, H. Barbeau, et al. Methods for a randomized trial of weight- supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair 17:153–167, 2003.
Dobkin, B., H. Barbeau, D. Deforge, J. Ditunno, R. Elashoff, D. Apple, M. Basso, A. Behrman, L. Fugate, S. Harkema, M. Saulino, and M. Scott. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 21:25–35, 2007.
Hubli and Dietz. The physiological basis of neurorehabilitation—locomotor training after spinal cord injury. Journal of NeuroEngineering and Rehabilitation 10:5, 2013.
Dietz, V., M. Wirz, A. Curt, and G. Colombo. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36:380–390, 1998.
Field-Fote, E. C., S. D. Lindley, and A. L. Sherman. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther 29:127–137, 2005.
Nooijen, C. F., N. ter Hoeve, and E. C. Field-Fote. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil 6:36, 2009.
Field-Fote, E. C., and K. E. Roach. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther 91:48–64, 2011.
Alcobendas-Maestro, M., A. Escları´n-Ruz, R. M. Casado-López, et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil. Neural Repair 26:1058–1063, 2012.
Hoekstra, F., M. P. van Nunen, K. H. Gerrits, J. M. Stolwijk-Swüste, M. H. Crins, and T. W. Janssen. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. J Rehabil Res Dev. 50:1411–1422, 2013.
Gordon, K. E., M. J. Wald, and T. J. Schnitzer. Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R. 5:663–671, 2013.
Steinman, L. Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764, 2001.
Karni, A., E. Kahana, N. Zilber, O. Abramsky, M. Alter, and D. Karussis. The frequency of multiple sclerosis in Jewish and Arab populations in greater Jerusalem. Neuroepidemiology 22:82–86, 2003.
Khan, F., L. Turner-Stokes, L. Ng, and T. Kilpatrick. Multidisciplinary rehabilitation for adults with multiple sclerosis. Cochrane Database Syst. Rev. Apr 18: CD006036, 2007. Review.
Giesser, B., J. Beres-Jones, A. Budovitch, E. Herlihy, and S. Harkema. Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study. Mult Scler 13:224–231, 2007.
Pilutti, L. A., D. A. Lelli, J. E. Paulseth, M. Crome, S. Jiang, M. P. Rath-bone, et al. Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progres-sive multiple sclerosis: a pilot study. Arch Phys Med Rehabil 92:31–36, 2011.
Lo, A. C., and E. W. Triche. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 22:661–671, 2008.
Beer, S., B. Aschbacher, D. Manoglou, E. Gamper, J. Kool, and J. Kesselring. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 14:231–236, 2008.
Schwartz, I., A. Sajin, E. Moreh, I. Fisher, M. Neeb, A. Forest, et al. Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult. Scler. 18:881–890, 2012.
Vaney, C., B. Gattlen, V. Lugon-Moulin, A. Meichtry, R. Hausammann, D. Foinant, et al. Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil. Neural Repair. 26:212–221, 2012.
Straudi, S., M. G. Benedetti, E. Venturini, M. Manca, C. Foti, and N. Basaglia. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis?. A pilot randomized-control trial. NeuroRehabilitation 33:555–563, 2013.
Gandolfi, M., C. Geroin, A. Picelli, A. Picelli, W. A. Munari, A. Tamburin, F. Marchioretto, and N. Smania. Munari, A, S, F, N. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front. Hum. Neurosci. 8:318, 2014.
Kurtzke, J. F. Rating neurologic impairment in multiple scle-rosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452, 1983.
Schmartz, A. C., A. D. Meyer-Heim, R. Müller, and M. Bolliger. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 6:29–37, 2011.
Lo, A. C., V. C. Chang, M. A. Gianfrancesco, et al. Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil. 14(7):51, 2010.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4