Banerjee, P., B. Caulfield, L. Crowe, et al. Prolonged electrical muscle stimulation exercise improves strength, peak VO2, and exercise capacity in patients with stable chronic heart failure. J. Card. Fail. 15:319–326, 2009.
Bellemare, F., J. J. Woods, R. Johansson, et al. Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J. Neurophysiol. 50:1380–1392, 1983.
Bhargava, L. J., M. G. Pandy, and F. C. Anderson. A phenomenological model for estimating metabolic energy consumption in muscle contraction. J. Biomech. 37:81–88, 2004.
Bobet, J., E. R. Gossen, and R. B. Stein. A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans. IEEE Trans. Neural. Syst. Rehabil. Eng. 13:444–451, 2005.
Carty, A., K. McCormack, G. F. Coughlan, et al. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch. Phys. Med. Rehabil. 93:790–795, 2012.
Caulfield, B., L. Crowe, C. Minogue, et al. The use of electrical muscle stimulation to elicit a cardiovascular exercise response without joint loading: a case study. J. Exerc. Physiol. Online 7:84–88, 2004.
Clarke, D. H. Energy cost of isometric exercise, research quarterly. Am. Assoc. Health Phys Educ Recreat. 31:4, 1960
Crognale, D., G. D. Vito, J. F. Grosset, et al. Neuromuscular electrical stimulation can elicit aerobic exercise response without undue discomfort in healthy physically active adults. J. Strength Cond. Res. 27:208–215, 2013.
Debigaré, R., C. H. Côté, F.-S. Hould, et al. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur. Respir. J. 21:273–278, 2003.
Ding, J., S. A. Binder-Macleod, and A. S. Wexler. Two-step, predictive, isometric force model tested on data from human and rat muscles. J. Appl. Physiol. 85:2176–2189, 1998.
Ding, J., L. W. Chou, T. M. Kesar, et al. Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries. Muscle Nerve 36(214–22):2, 2007.
Ding, J., A. S. Wexler, and S. A. Binder-Macleod. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J. Appl. Physiol. 88:917–925, 2000.
Ding, J., A. S. Wexler, and S. A. Binder-Macleod. A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve 26(477–48):5, 2002.
Ding, J., A. S. Wexler, and S. A. Binder-Macleod. Mathematical models for fatigue minimization during functional electrical stimulation. J. Electromyogr. Kinesiol. 13:575–588, 2003.
Ding, J., A. S. Wexler, and S. A. Binder-Macleod. A predictive fatigue model-I: predicting the effect of stimulation frequency and pattern on fatigue IEEE Trans. Neural. Syst. Rehabil. Eng. 10:48–58, 2002.
Dobsak, P., M. Novakova, B. Fiser, et al. Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int. Heart J. 47:441–453, 2006.
FDA Guidance Document. Significant risk and nonsignificant risk medical device studies. In: Administration FaD editor, Silver Spring MD., 2006.
Frey Law, L. A., and R. K. Shields. Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis. J. Neuroeng. Rehabil. 2:12, 2005.
Frey Law, L. A., and R. K. Shields. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models. J. Appl. Physiol. 100:1027–1036, 2006.
Hamada, T., T. Hayashi, T. Kimura, et al. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J. Appl. Physiol. 96:911–916, 2004.
Haman, F., S. R. Legault, and J. M. Weber. Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation. J. Physiol. 556:305–313, 2004.
Hatze, H., and J. D. Buys. Energy-optimal controls in the mammalian neuromuscular system. Biol. Cybern. 27:9–20, 1977.
Homsher, E., W. F. Mommaerts, and N. V. Ricchiuti. Energetics of shortening muscles in twitches and tetanic contractions. II. Force-determined shortening heat. J. Gen. Physiol. 62:677–692, 1973.
Houdijk, H., M. F. Bobbert, and A. de Haan. Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction. J. Biomech. 39:536–543, 2006.
Minogue, C. M., B. M. Caulfield, and M. M. Lowery. Whole body oxygen uptake and evoked knee torque in response to low frequency electrical stimulation of the quadriceps muscles: V[bullet]O2 frequency response to NMES. J. Neuroeng. Rehabil. 10:63, 2013.
Minogue, C. M., B. M. Caulfield, and M. M. Lowery. Whole body oxygen uptake and evoked torque during sub-tetanic isometric electrical stimulation of the quadriceps muscles in a single 30 minute session. Arch. Phys. Med. Rehabil. 95:9, 2014.
Nuhr, M. J., D. Pette, R. Berger, et al. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur. Heart J. 25:136–143, 2004.
Perumal, R., A. S. Wexler, and S. A. Binder-Macleod. Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion. J. Neuroeng. Rehabil. 5:33, 2008.
Perumal, R., A. S. Wexler, J. Ding, et al. Modeling the length dependence of isometric force in human quadriceps muscles. J. Biomech. 35:919–930, 2002.
Poole, R. B., C. P. Harrold, J. H. Burridge, et al. Electrical muscle stimulation acutely mimics exercise in neurologically intact individuals but has limited clinical benefits in patients with type 2 diabetes. Diabetes Obes. Metab. 7:344–351, 2005.
Ratkevicius, A., and B. Quistorff. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle. Muscle Nerve. 25:419–426, 2002.
Ratkevicius, A., A. Skurvydas, E. Povilonis, et al. Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans. Eur. J. Appl. Physiol. Occup. Physiol. 77:462–468, 1998.
Richardson, D. Blood flow response of human calf muscles to static contractions at various percentages of MVC. J. Appl. Physiol. 51:929–933, 1981.
Routsi, C., V. Gerovasili, I. Vasileiadis, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit. Care 14:R74, 2010.
Russ, D. W., M. A. Elliott, K. Vandenborne, et al. Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 282:E448–457, 2002.
Ryan, T. E., M. L. Erickson, H. J. Young, et al. Case report: endurance electrical stimulation training improves skeletal muscle oxidative capacity in chronic spinal cord injury. Arch. Phys. Med. Rehabil. 94(12):2559–2561, 2013.
Scott, W. B., S. C. Lee, T. E. Johnston, et al. Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. Phys. Ther. 86:788–799, 2006.
Smart, N. A., G. Dieberg, and F. Giallauria. Functional electrical stimulation for chronic heart failure: a meta-analysis. Int. J. Cardiol. 2012.
Theurel, J., R. Lepers, L. Pardon, et al. Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir. Physiol. Neurobiol. 157:341–347, 2007.
Umberger, B. R., K. G. Gerritsen, and P. E. Martin. A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 6(99–11):1, 2003.
Van Soest, A. J., and M. F. Bobbert. The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69:195–204, 1993.
van Zandwijk, J. P., M. F. Bobbert, G. C. Baan, et al. From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces. Biol. Cybern. 75:409–417, 1996.
Vanderthommen, M., S. Duteil, C. Wary, et al. A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J. Appl. Physiol. 94:1012–1024, 2003.
Vivodtzev, I., J. Pepin, G. Vottero, et al. Improvement in quadriceps strength and dyspnea in daily tasks after 1 month of electrical stimulation in severely deconditioned and malnourished COPD. Chest 129:9, 2006.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4