A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-1213-3 below:

An Energetic Model of Low Frequency Isometric Neuromuscular Electrical Stimulation

References
  1. Banerjee, P., B. Caulfield, L. Crowe, et al. Prolonged electrical muscle stimulation exercise improves strength, peak VO2, and exercise capacity in patients with stable chronic heart failure. J. Card. Fail. 15:319–326, 2009.

  2. Bellemare, F., J. J. Woods, R. Johansson, et al. Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J. Neurophysiol. 50:1380–1392, 1983.

    CAS  PubMed  Google Scholar 

  3. Bhargava, L. J., M. G. Pandy, and F. C. Anderson. A phenomenological model for estimating metabolic energy consumption in muscle contraction. J. Biomech. 37:81–88, 2004.

    Article  PubMed  Google Scholar 

  4. Bobet, J., E. R. Gossen, and R. B. Stein. A comparison of models of force production during stimulated isometric ankle dorsiflexion in humans. IEEE Trans. Neural. Syst. Rehabil. Eng. 13:444–451, 2005.

    Article  PubMed  Google Scholar 

  5. Carty, A., K. McCormack, G. F. Coughlan, et al. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch. Phys. Med. Rehabil. 93:790–795, 2012.

    Article  PubMed  Google Scholar 

  6. Caulfield, B., L. Crowe, C. Minogue, et al. The use of electrical muscle stimulation to elicit a cardiovascular exercise response without joint loading: a case study. J. Exerc. Physiol. Online 7:84–88, 2004.

    Google Scholar 

  7. Clarke, D. H. Energy cost of isometric exercise, research quarterly. Am. Assoc. Health Phys Educ Recreat. 31:4, 1960

  8. Crognale, D., G. D. Vito, J. F. Grosset, et al. Neuromuscular electrical stimulation can elicit aerobic exercise response without undue discomfort in healthy physically active adults. J. Strength Cond. Res. 27:208–215, 2013.

    Article  PubMed  Google Scholar 

  9. Debigaré, R., C. H. Côté, F.-S. Hould, et al. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur. Respir. J. 21:273–278, 2003.

    Article  PubMed  Google Scholar 

  10. Ding, J., S. A. Binder-Macleod, and A. S. Wexler. Two-step, predictive, isometric force model tested on data from human and rat muscles. J. Appl. Physiol. 85:2176–2189, 1998.

    CAS  PubMed  Google Scholar 

  11. Ding, J., L. W. Chou, T. M. Kesar, et al. Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries. Muscle Nerve 36(214–22):2, 2007.

    Google Scholar 

  12. Ding, J., A. S. Wexler, and S. A. Binder-Macleod. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J. Appl. Physiol. 88:917–925, 2000.

    CAS  PubMed  Google Scholar 

  13. Ding, J., A. S. Wexler, and S. A. Binder-Macleod. A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve 26(477–48):5, 2002.

    Google Scholar 

  14. Ding, J., A. S. Wexler, and S. A. Binder-Macleod. Mathematical models for fatigue minimization during functional electrical stimulation. J. Electromyogr. Kinesiol. 13:575–588, 2003.

    Article  PubMed  Google Scholar 

  15. Ding, J., A. S. Wexler, and S. A. Binder-Macleod. A predictive fatigue model-I: predicting the effect of stimulation frequency and pattern on fatigue IEEE Trans. Neural. Syst. Rehabil. Eng. 10:48–58, 2002.

    Article  Google Scholar 

  16. Dobsak, P., M. Novakova, B. Fiser, et al. Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int. Heart J. 47:441–453, 2006.

    Article  PubMed  Google Scholar 

  17. FDA Guidance Document. Significant risk and nonsignificant risk medical device studies. In: Administration FaD editor, Silver Spring MD., 2006.

  18. Frey Law, L. A., and R. K. Shields. Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis. J. Neuroeng. Rehabil. 2:12, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Frey Law, L. A., and R. K. Shields. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models. J. Appl. Physiol. 100:1027–1036, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hamada, T., T. Hayashi, T. Kimura, et al. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J. Appl. Physiol. 96:911–916, 2004.

    Article  PubMed  Google Scholar 

  21. Haman, F., S. R. Legault, and J. M. Weber. Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation. J. Physiol. 556:305–313, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hatze, H., and J. D. Buys. Energy-optimal controls in the mammalian neuromuscular system. Biol. Cybern. 27:9–20, 1977.

    Article  CAS  PubMed  Google Scholar 

  23. Homsher, E., W. F. Mommaerts, and N. V. Ricchiuti. Energetics of shortening muscles in twitches and tetanic contractions. II. Force-determined shortening heat. J. Gen. Physiol. 62:677–692, 1973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Houdijk, H., M. F. Bobbert, and A. de Haan. Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction. J. Biomech. 39:536–543, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Minogue, C. M., B. M. Caulfield, and M. M. Lowery. Whole body oxygen uptake and evoked knee torque in response to low frequency electrical stimulation of the quadriceps muscles: V[bullet]O2 frequency response to NMES. J. Neuroeng. Rehabil. 10:63, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Minogue, C. M., B. M. Caulfield, and M. M. Lowery. Whole body oxygen uptake and evoked torque during sub-tetanic isometric electrical stimulation of the quadriceps muscles in a single 30 minute session. Arch. Phys. Med. Rehabil. 95:9, 2014.

  27. Nuhr, M. J., D. Pette, R. Berger, et al. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur. Heart J. 25:136–143, 2004.

    Article  PubMed  Google Scholar 

  28. Perumal, R., A. S. Wexler, and S. A. Binder-Macleod. Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion. J. Neuroeng. Rehabil. 5:33, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Perumal, R., A. S. Wexler, J. Ding, et al. Modeling the length dependence of isometric force in human quadriceps muscles. J. Biomech. 35:919–930, 2002.

    Article  PubMed  Google Scholar 

  30. Poole, R. B., C. P. Harrold, J. H. Burridge, et al. Electrical muscle stimulation acutely mimics exercise in neurologically intact individuals but has limited clinical benefits in patients with type 2 diabetes. Diabetes Obes. Metab. 7:344–351, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Ratkevicius, A., and B. Quistorff. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle. Muscle Nerve. 25:419–426, 2002.

  32. Ratkevicius, A., A. Skurvydas, E. Povilonis, et al. Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans. Eur. J. Appl. Physiol. Occup. Physiol. 77:462–468, 1998.

  33. Richardson, D. Blood flow response of human calf muscles to static contractions at various percentages of MVC. J. Appl. Physiol. 51:929–933, 1981.

  34. Routsi, C., V. Gerovasili, I. Vasileiadis, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit. Care 14:R74, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Russ, D. W., M. A. Elliott, K. Vandenborne, et al. Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 282:E448–457, 2002.

  36. Ryan, T. E., M. L. Erickson, H. J. Young, et al. Case report: endurance electrical stimulation training improves skeletal muscle oxidative capacity in chronic spinal cord injury. Arch. Phys. Med. Rehabil. 94(12):2559–2561, 2013.

  37. Scott, W. B., S. C. Lee, T. E. Johnston, et al. Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. Phys. Ther. 86:788–799, 2006.

    PubMed  Google Scholar 

  38. Smart, N. A., G. Dieberg, and F. Giallauria. Functional electrical stimulation for chronic heart failure: a meta-analysis. Int. J. Cardiol. 2012.

  39. Theurel, J., R. Lepers, L. Pardon, et al. Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir. Physiol. Neurobiol. 157:341–347, 2007.

    Article  PubMed  Google Scholar 

  40. Umberger, B. R., K. G. Gerritsen, and P. E. Martin. A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 6(99–11):1, 2003.

    Google Scholar 

  41. Van Soest, A. J., and M. F. Bobbert. The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69:195–204, 1993.

    Article  PubMed  Google Scholar 

  42. van Zandwijk, J. P., M. F. Bobbert, G. C. Baan, et al. From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces. Biol. Cybern. 75:409–417, 1996.

    Article  PubMed  Google Scholar 

  43. Vanderthommen, M., S. Duteil, C. Wary, et al. A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J. Appl. Physiol. 94:1012–1024, 2003.

  44. Vivodtzev, I., J. Pepin, G. Vottero, et al. Improvement in quadriceps strength and dyspnea in daily tasks after 1 month of electrical stimulation in severely deconditioned and malnourished COPD. Chest 129:9, 2006.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4