A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-1176-4 below:

FACTS: Fully Automatic CT Segmentation of a Hip Joint

References
  1. Aljabar, P., R. Heckemann, A. Hammers, J. Hajnal, and D. Rueckert. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3):726–738, 2009.

    Article  CAS  PubMed  Google Scholar 

  2. Boykov, Y., O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11):1222–1239, 2001.

    Article  Google Scholar 

  3. Breiman, L. Random forests. Mach. Learn. 45(1):5–32, 2001.

    Article  Google Scholar 

  4. Cheng, Y., S. Zhou, Y. Wang, C. Guo, J. Bai, and S. Tamura. Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recogn. 46(11):2969–2984, 2013.

    Article  Google Scholar 

  5. Chu, C., M. Oda, T. Kitasaka, K. Misawa, M. Fujiwara, Y. Hayashi, Y. Nimura, D. Rueckert, and K. Mori. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. MICCAI 2013, Part II, pp. 165–172, 2013.

  6. Criminisi, A., J. Shotton, D. Robertson, and E. Konukoglu. Regression forests for efficient anatomy detection and localization in CT studies. MCV 2010:106–117, 2010.

    Google Scholar 

  7. Ehrhardte, J., H. Handels, W. Plotz, and S. J. Poppl. Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters. Methods Inf. Med. 43(4):391–397, 2004.

    Google Scholar 

  8. Ganz, R., K. Klaue, T. Vinh, and J. Mast. A new periacetabular osteotomy for the treatment of hip dysplasia: technique and preliminary results. Clin. Orthop. 232:26–36, 1988.

    PubMed  Google Scholar 

  9. Glocker, B., N. Komodakis, G. Tziritas, N. Navab, and N. Paragios. Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6):731–741, 2008.

    Article  PubMed  Google Scholar 

  10. Haas, B., T. Coradi, M. Scholz, P. Kunz, M. Huber, U. Oppitz, L. André, V. Lengkeek, D. Huyskens, A. van Esch, and R. Reddick. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys. Med. Biol. 53(6):1751–1771, 2008.

    Article  CAS  PubMed  Google Scholar 

  11. Kainmueller, D., H. Lamecker, S. Zachow, and H.-C. Hege. An articulated statistical shape model for accurate hip joint segmentation. IEEE EMBC, pp. 6345–6351, 2009.

  12. Kainmueller, D., H. Lamecker, S. Zachow, and H. C. Hege. Coupling deformable models for multi-object segmentation. ISBMS 2008:69–78, 2008.

    Google Scholar 

  13. Kang, Y. K. Engelke, and W. and A. Kalender. A new accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5):586–598, 2003.

    Article  PubMed  Google Scholar 

  14. Lamecker, H., M. Seebaß, H. C. Hege, and P. Deuflhard. A 3D statistical shape model of the pelvic bone for segmentation. SPIE 5370:1341–1351, 2004.

    Google Scholar 

  15. Lindner, C. S. Thiagarajah, J. M. Wilkinson, arcOGEN Consortium, G. Wallis, and T. F. Cootes. Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans. Med. Imaging 32(8):1462–1472, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, L., T. Ecker, S. Schumann, K. Siebenrock, L.-P. Nolte, and G. Zheng. A novel planning and navigation system for peri-acetabular osteotomy (PAO). Int. J. Comput. Assist. Radiol. Surg. 9(Suppl 1):S168–S169, 2014.

    Google Scholar 

  17. McKinley, T. O. The Bernese Periacetabular Osteotomy: review of Reported Outcomes and the Early Experience at the University of Iowa. Iowa Orthop. J. 23:23–28, 2003.

    PubMed Central  PubMed  Google Scholar 

  18. Murray, D. W. The definition and measurement of acetabular orientation. J. Bone Joint Surg. [Br.] 75-B:228–232, 1993.

  19. Pettersson, J., H. Knutsson, and M. Borga. Automatic Hip Bone Segmentation Using Non-Rigid Registration. ICPR 2006:946–949, 2006.

    Google Scholar 

  20. Seim, H., D. Kainmueller, M. Heller, H. Lamecker, S. Zachow, and H. C. Hege. Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. VCBM 2008:93–100, 2008.

    Google Scholar 

  21. Vercauteren, T., X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1):61–72, 2009.

    Article  Google Scholar 

  22. Viola, P., and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001, vol. I, pp. 511–518, 2001.

  23. Wolz, R., C. Chu, K. Misawa, M. Fujiwara, K. Mori, and D. Rueckert. Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9):1723–1730, 2013.

    Article  PubMed  Google Scholar 

  24. Xia, Y., J. Fripp, S. S Chandra, R. Schwarz, C. Engstrom and S. Crozier. Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 58:7375–7390.

  25. Yang, C., R. Duraiswami, and L. Davis. Efficient Kernel Machines Using the Improved Fast Gauss Transform. NIPS 2005:1561–1568, 2005.

    Google Scholar 

  26. Yokota, F., T. Okada, M. Takao, S. Sugano, Y. Tada, N. Tomiyama, and Y. Sato. Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. MICCAI 2013, Part II, pp. 190–197, 2013.

  27. Yokota, F., T. Okada, M. Takao, S. Sugano, Y. Tada, and Y. Sato. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. MICCAI 2009, Part II, pp. 811–818, 2009.

  28. Zheng, G., X. Dong, K. Rajamani, X. Zhang, M. Styner, R. Thoranaghatte, and L.-P. Nolte. MA Gonzalez Ballester. Accurate and robust reconstruction of a surface model of the proximal femur from sparse-point data and a dense-point distribution model for surgical navigation. IEEE Trans. Biomed. Eng. 54:2109–2122, 2007.

    Article  PubMed  Google Scholar 

  29. Zoroofi, R. A., Y. Sato, T. Sasama, T. Nishii, N. Sugano, K. Yonenobu, H. Yoshikawa, T. Ochi, and S. Tamura. Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans. Inf. Technol. Biomed. 7(4):329–343, 2003.

    Article  PubMed  Google Scholar 

  30. van Ginneken, B., T. Heimann, and M. Styner. 3D Segmentation in the Clinic: A Grand Challenge. In: T. Heimann, M. Styner, B. van Ginneken (Eds.): 3D Segmentation in the Clinic: A Grand Challenge, pp. 7-15, 2007.

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4