Aljabar, P., R. Heckemann, A. Hammers, J. Hajnal, and D. Rueckert. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3):726–738, 2009.
Boykov, Y., O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11):1222–1239, 2001.
Breiman, L. Random forests. Mach. Learn. 45(1):5–32, 2001.
Cheng, Y., S. Zhou, Y. Wang, C. Guo, J. Bai, and S. Tamura. Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recogn. 46(11):2969–2984, 2013.
Chu, C., M. Oda, T. Kitasaka, K. Misawa, M. Fujiwara, Y. Hayashi, Y. Nimura, D. Rueckert, and K. Mori. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. MICCAI 2013, Part II, pp. 165–172, 2013.
Criminisi, A., J. Shotton, D. Robertson, and E. Konukoglu. Regression forests for efficient anatomy detection and localization in CT studies. MCV 2010:106–117, 2010.
Ehrhardte, J., H. Handels, W. Plotz, and S. J. Poppl. Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters. Methods Inf. Med. 43(4):391–397, 2004.
Ganz, R., K. Klaue, T. Vinh, and J. Mast. A new periacetabular osteotomy for the treatment of hip dysplasia: technique and preliminary results. Clin. Orthop. 232:26–36, 1988.
Glocker, B., N. Komodakis, G. Tziritas, N. Navab, and N. Paragios. Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6):731–741, 2008.
Haas, B., T. Coradi, M. Scholz, P. Kunz, M. Huber, U. Oppitz, L. André, V. Lengkeek, D. Huyskens, A. van Esch, and R. Reddick. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys. Med. Biol. 53(6):1751–1771, 2008.
Kainmueller, D., H. Lamecker, S. Zachow, and H.-C. Hege. An articulated statistical shape model for accurate hip joint segmentation. IEEE EMBC, pp. 6345–6351, 2009.
Kainmueller, D., H. Lamecker, S. Zachow, and H. C. Hege. Coupling deformable models for multi-object segmentation. ISBMS 2008:69–78, 2008.
Kang, Y. K. Engelke, and W. and A. Kalender. A new accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5):586–598, 2003.
Lamecker, H., M. Seebaß, H. C. Hege, and P. Deuflhard. A 3D statistical shape model of the pelvic bone for segmentation. SPIE 5370:1341–1351, 2004.
Lindner, C. S. Thiagarajah, J. M. Wilkinson, arcOGEN Consortium, G. Wallis, and T. F. Cootes. Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans. Med. Imaging 32(8):1462–1472, 2013.
Liu, L., T. Ecker, S. Schumann, K. Siebenrock, L.-P. Nolte, and G. Zheng. A novel planning and navigation system for peri-acetabular osteotomy (PAO). Int. J. Comput. Assist. Radiol. Surg. 9(Suppl 1):S168–S169, 2014.
McKinley, T. O. The Bernese Periacetabular Osteotomy: review of Reported Outcomes and the Early Experience at the University of Iowa. Iowa Orthop. J. 23:23–28, 2003.
Murray, D. W. The definition and measurement of acetabular orientation. J. Bone Joint Surg. [Br.] 75-B:228–232, 1993.
Pettersson, J., H. Knutsson, and M. Borga. Automatic Hip Bone Segmentation Using Non-Rigid Registration. ICPR 2006:946–949, 2006.
Seim, H., D. Kainmueller, M. Heller, H. Lamecker, S. Zachow, and H. C. Hege. Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. VCBM 2008:93–100, 2008.
Vercauteren, T., X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1):61–72, 2009.
Viola, P., and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001, vol. I, pp. 511–518, 2001.
Wolz, R., C. Chu, K. Misawa, M. Fujiwara, K. Mori, and D. Rueckert. Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9):1723–1730, 2013.
Xia, Y., J. Fripp, S. S Chandra, R. Schwarz, C. Engstrom and S. Crozier. Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 58:7375–7390.
Yang, C., R. Duraiswami, and L. Davis. Efficient Kernel Machines Using the Improved Fast Gauss Transform. NIPS 2005:1561–1568, 2005.
Yokota, F., T. Okada, M. Takao, S. Sugano, Y. Tada, N. Tomiyama, and Y. Sato. Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. MICCAI 2013, Part II, pp. 190–197, 2013.
Yokota, F., T. Okada, M. Takao, S. Sugano, Y. Tada, and Y. Sato. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. MICCAI 2009, Part II, pp. 811–818, 2009.
Zheng, G., X. Dong, K. Rajamani, X. Zhang, M. Styner, R. Thoranaghatte, and L.-P. Nolte. MA Gonzalez Ballester. Accurate and robust reconstruction of a surface model of the proximal femur from sparse-point data and a dense-point distribution model for surgical navigation. IEEE Trans. Biomed. Eng. 54:2109–2122, 2007.
Zoroofi, R. A., Y. Sato, T. Sasama, T. Nishii, N. Sugano, K. Yonenobu, H. Yoshikawa, T. Ochi, and S. Tamura. Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans. Inf. Technol. Biomed. 7(4):329–343, 2003.
van Ginneken, B., T. Heimann, and M. Styner. 3D Segmentation in the Clinic: A Grand Challenge. In: T. Heimann, M. Styner, B. van Ginneken (Eds.): 3D Segmentation in the Clinic: A Grand Challenge, pp. 7-15, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4