A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-1018-4 below:

Computational Study of the Dynamics of a Bileaflet Mechanical Heart Valve in the Mitral Position

References
  1. Akins, C. W., B. Travis, and A. P. Yoganathan. Energy loss for evaluating heart valve performance. J Thorac. Cardiovasc. Surg. 136(4):820–833, 2008.

    Article  PubMed  Google Scholar 

  2. Akutsu, T., and T. Masuda. Three-dimensional flow analysis of a mechanical bileaflet mitral prosthesis. J. Artif. Organs. 2:112–123, 2003.

    Google Scholar 

  3. Bagno, A., F. Anzil, R. Buselli, E. Pesavento, V. Tarzia, V. Pengo, T. Bottio, and G. Gerosa. Bileaflet mechanical heart valve closing sounds: in vitro classification by honocardiographic analysis. J. Artif. Organs. 12:172–181, 2009.

    Article  PubMed  Google Scholar 

  4. Baudet, E. M., C. C. Oca, X. F. Roques, M. N. Laborde, A. S. Hafez, M. A. Collot, and I. M. Ghidoni. A 5.5-year experience with the St. Jude medical cardiac valve prosthesis: early and late results of 737 valve replacements in 671 patients. J. Thorac. Cardiovasc. Surg. 90:137–144, 1985.

    CAS  PubMed  Google Scholar 

  5. Bhardwaj, R., and R. Mittal. Benchmarking a coupled immersed-boundary-finite-element solver for large scale flow-induced deformation. AIAA J. 50(7):1638–1642, 2011.

    Article  Google Scholar 

  6. Bloomfield, P. Choice of heart valve prosthesis. Heart 87:583–589, 2002.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bolliger, D., F. Bernet, M. Filipovic, and M. D. Seeberger. A rare cause for severe mitral regurgitation after mitral valve replacement. Anesth. Analg. 104(3):498–499, 2007.

    Article  PubMed  Google Scholar 

  8. Bottio, T., D. Casarotto, G. Thiene, L. Caprili, A. Angelini, and G. Gerosa. Leaflet escape in a new bileaflet mechanical valve. Circulation 107:2303–2306, 2003.

    Article  PubMed  Google Scholar 

  9. Cenedese, A., Z. D. Prete, M. Miozzi, and G. Querzoli. A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp. Fluids 39:322–335, 2005.

    Article  Google Scholar 

  10. Chorin, A. J. Numerical solution of the navier-stokes equations. Math. Comput. 22:745–762, 1968.

    Article  Google Scholar 

  11. Dong, H., M. Bozkurttas, R. Mittal, P. Madden, and G. V. Lauder. Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645:345–373, 2010.

    Article  Google Scholar 

  12. Duveau, D., J. L. Michaud, P. Despins, P. Patra, M. Train, H. Dupon, L. Rozo, and R. Carlier. Mitral valve replacement with the St. Jude medical prosthesis: 242 cases with clinical results and an evaluation of prosthesis positioning. In: Advances in Cardiac Valves: Clinical Perspectives (Proceedings of the Third International Symposium on the St. Jude Valve, November, 1982, Scottsdale, Arizona), edited by I. M. E. De Bakey. New York: Yorke Medical Books, 1983, pp. 183–190.

  13. Fortini, S., G. Querzoli, S. Espa, and A. Cenedese. Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp. Fluids 54:1609, 2013.

  14. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. 103:6305–6308, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Heinlich, R. S., A. A. Fontaine, R. Y. Grimes, A. Sidhaye, S. Yang, K. E. Moore, R. A. Levine, and A. P. Yoganathan. Experimental analysis of fluid mechanical energy losses in aortic valve stenosis: importance of pressure recovery. Ann. Biomed. Eng. 24:685–694, 1996.

    Article  Google Scholar 

  16. Jeong, J., and F. Hussain. On the identification of a vortex. J. Fluid Mech. 285:69–94, 1995.

    Article  Google Scholar 

  17. Johansen, P. Mechanical heart valve cavitation. Expert Rev. Med. Dev. 1(1):95–104, 2004.

    Article  Google Scholar 

  18. Kerendi, F., and R. A. Guyton. Replacement of mechanical mitral valve prosthesis due to patient intolerance of clicking noise: case report. J. Heart Valve Dis. 14:261–263, 2005.

    PubMed  Google Scholar 

  19. Leefe, S. E., and C. R. Gentle. Theoretical evaluation of energy loss methods in the analysis of prosthetic heart valves. J. Biomed. Eng. 9(2):121–127, 1987.

    Article  CAS  PubMed  Google Scholar 

  20. Masiello, P., G. Mastrogiovanni, G. Santoro, S. Lesu, and G. Di Benedetto. Early massive thrombosis of a mechanical mitral valve. Tex. Heart Inst. J. 25:303–305, 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Mächler, H., M. Perthel, G. Reiter, U. Reiter, M. Zink, P. Bergmann, A. Waltensdorfer, and J. Laas. Influence of bileaflet prosthetic mitral valve orientation on left ventricular flow-an experimental in vivo magnetic resonance imaging study. Eur. J. Cardiothorac. Surg. 26(4):747–753, 2004.

    Article  PubMed  Google Scholar 

  22. McGonigle, N. C., J. M. Jones, P. Sidhu, and S. W. MacGowan. Concomitant mitral valve surgery with aortic valve replacement: a 21-year experience with a single mechanical prosthesis. J. Cardiothorac. Surg. 2:24, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Milo, S., E. Rambod, G. Gutfinger, and M. Gharib. Mitral mechanical heart valves: in vitro studies of their closure, vortex and microbubble formation with possible medical implications. Eur. J. Cardiothorac. Surg. 24:364–370, 2003.

    Article  PubMed  Google Scholar 

  24. Mittal, R., H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10):4825–4852, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mittal, R., and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–261, 2005.

    Article  Google Scholar 

  26. Park, J. B., and J. D. Bronzino. Biomaterials: Principles and Applications. New York: CRC Press, 2002.

  27. Pierrakos, O., and P. P. Vlachos. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng. 128(4):527–539, 2006.

    Article  PubMed  Google Scholar 

  28. Pirabot, P., and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119:1034–1048, 2009.

    Article  Google Scholar 

  29. Querzoli, G., S. Fortini, and A. Cenedese. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids 22:041901, 2010.

    Article  Google Scholar 

  30. Seo, J. H., and R. Mittal. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25:110801–110821, 2013.

    Article  Google Scholar 

  31. Seo, J. H., V. Vedula, T. Abraham, and R. Mittal. Multiphysics computational models for cardiac flow and virtual cardiography. Int. J. Numer. Methods Biomed. Eng. 29(8):850–869, 2013.

    Article  Google Scholar 

  32. Sharma, C. P., and M. Szycher. Blood Compatible Materials and Devices: Perspectives Towards the 21st Century. CRC Press, 1991, pp. 153–163.

  33. Tang, G. H. L., V. Rao, S. Siu, and J. Butany. Thrombosis of mechanical mitral valve prosthesis. J. Card. Surg. 20:481–486, 2005.

    Article  PubMed  Google Scholar 

  34. Tribouilloy, C., W. F. Shen, M. A. Slama, H. Dufossé, D. Choquet, A. Marek, and J. P. Lesbre. Non-invasive measurement of the regurgitant fraction by pulsed Doppler echocardiography in isolated pure mitral regurgitation. Br. Heart J. 66(4):290–294, 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Van Rijk-Zwikker, G. L., B. J. Delemarre, and H. A. Huysmans. The orientation of the bi-leaflet CarboMedics valve in the mitral position determines left ventricular spatial flow patterns. Eur. J. Cardiothorac. Surg. 10(7):513–520, 1996.

    Article  PubMed  Google Scholar 

  36. Vedula, V., S. Fortini, J. H. Seo, G. Querzoli, and R. Mittal. Computational modeling and validation of intraventricular flow in a simple model of the left ventricle. Ann. Biomed. Eng. (in review).

  37. Vongpatanasin, W., L. D. Hillis, and R. A. Lange. Prosthetic heart valves. N. Engl. J. Med. 335:407–416, 1996.

    Article  CAS  PubMed  Google Scholar 

  38. Yoganathan, A. P., Z. He, and S. C. Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, X., Q. Xue, R. Mittal, and S. Beilamowicz. A coupled sharp-interface immersed boundary-finite element method for flow structure interaction with application to human phonation. J. Biomech. Eng. 132:111003-1, 2010.

  40. Zheng, L., T. L. Hedrick, and R. Mittal. A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721:118–154, 2013.

    Article  Google Scholar 

  41. Zheng, L., T. L. Hedrick, and R. Mittal. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8(1):e53060, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zoghbi, W. A., et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echocardiogr. 16:777–802, 2003.

    Article  PubMed  Google Scholar 

  43. Zoghbi, W. A., et al. Recommendations for evaluation of prosthetic valves with echocardiography. J. Am. Soc. Echocardiogr. 22:975–1014, 2009.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4