Avoli, M. Do interictal discharges promote or control seizures? Experimental evidence from an in vitro model of epileptiform discharge. Epilepsia 42(S3):2–4, 2001.
Avoli, M., G. Biagini, and M. de Curtis. Do interictal spikes sustain seizures and epileptogenesis? Epilepsy Curr. 6(6):203–207, 2006.
Chakravarthy, N., K. Tsakalis, S. Sabesan, and L. Iasemidis. Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures. Ann. Biomed. Eng. 37:565–585, 2009.
Chauvière, L., T. Doublet, A. Ghestem, S. S. Siyoucef, F. Wendling, R. Huys, V. Jirsa, F. Bartolomei, and C. Bernard. Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann. Neurol. 71(6):805–814, 2012.
De Curtis, M., A. Manfridi, and G. Biella. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J. Neurosci. 18:7543–7551, 1998.
De Curtis, M., L. Tassi, G. Russo, R. Mai, M. Cossu, and S. Francione. Increased discharge threshold after an interictal spike in human focal epilepsy. Eur. J. Neurosci. 22:2971–2976, 2005.
Demont-Guignard, S., P. Benquet, U. Gerber, A. Biraben, B. Martin, and F. Wendling. Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes. Ann. Neurol. 71(3):342–352, 2012.
Dichter, M. A., and G. F. Ayala. Cellular mechanisms of epilepsy: a status report. Science 237:157–164, 1987.
Duncan, J. S. Antiepileptic Drugs and the Electroencephalogram. Epilepsia 28:259–266, 1987.
Dzhala, V. I., and K. J. Staley. Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J. Neurosci. 23(5):1840–1846, 2003.
Engel, J. Jr., and R. F. Ackermann. Interictal EEG spikes correlate with decreased, rather than increased, epileptogenicity in amygdaloid kindled rats. Brain Res. 190:543–548, 1980.
Gotman, J. Relationships between triggered seizures, spontaneous seizures, and interictal spiking in the kindling model of epilepsy. Exp. Neurol. 84:259–273, 1984.
Gotman, J. Relationships between interictal spiking and seizures - Human and Experimental Evidence. Can. J. Neurol. Sci. 18:573–576, 1991.
Gotman, J., and P. Gloor. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr. Clin. Neurophysiol. 41:513–529, 1976.
Gotman, J., and M. G. Marciani. Electroencephalographic spiking activity, drug levels, and seizure occurrence in epileptic patients. Ann. Neurol. 17:597–603, 1985.
Huberfeld, G., L. M. de la Prida, J. Pallud, I. Cohen, and M. Le Van. Quyen, C. Adam, S. Clemenceau, M. Baulac and R. Miles. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat. Neurosci. 14(5):627–634, 2011.
Iasemidis, L. D., J. C. Principe, and J. C. Sackellares. Measurement and quantification of spatiotemporal dynamics of human epileptic seizures. In: Nonlinear Biomedical Signal Processing, Vol. II, edited by M. Akay. New York: IEEE Press, 2000, pp. 294–318.
Iasemidis, L. D., and J. C. Sackellares. The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex. In: Measuring Chaos in the Human Brain, edited by D. Duke, and W. Pritchard. Singapore: World Scientific, 1991, pp. 49–82.
Iasemidis, L. D., and J. C. Sackellares. Chaos theory and epilepsy. Neuroscientist 2:118–125, 1996.
Iasemidis, L. D., J. C. Sackellares, H. P. Zaveri, and W. J. Williams. Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures. Brain Topogr. 2:187–201, 1990.
Iasemidis, L. D., D. S. Shiau, J. C. Sackellares, P. M. Pardalos, and A. Prasad. Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans. Biomed. Eng. 51:493–506, 2004.
Katz, A., D. A. Marks, G. McCarthy, and S. S. Spencer. Does interictal spiking change prior to seizures? Electroencephalogr. Clin. Neurophysiol. 79:153, 1991.
Katz, L. C., and C. J. Shatz. Synaptic Activity and the Construction of Cortical Circuits. Science 274:1133–1138, 1996.
Krishnan, B., A. Faith, I. Vlachos, A. Roth, K. Williams, K. Noe, J. Drazkowski, L. Tapsell, J. Sirven, and L. Iasemidis. Resetting of brain dynamics: epileptic versus psychogenic nonepileptic seizures. Epilepsy Behav. 22:S74–S81, 2011.
Lange, H. H., J. P. Lieb, J. Engel, Jr., and P. H. Crandall. Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 56:543–555, 1983.
Lieb, J. P., S. C. Woods, A. Siccardi, P. H. Crandall, D. O. Walter, and B. Leake. Quantitative analysis of depth spiking in relation to seizure foci in patients with temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 44:641–663, 1978.
Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28:129–137, 1982.
Maragos, P., and R. W. Schafer. Morphological filters–Part II: their relations to median, order-statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process. 35:1170–1184, 1987.
Nikolaou, N. G., and I. A. Antoniadis. Application of morphological operators as envelope extractors for impulsive-type periodic signals. Mech. Syst. Signal Process. 17(6):1147–1162, 2003.
Nishida, S., M. Nakamura, A. Ikeda, and H. Shibasaki. Signal separation of background EEG and spike by using morphological filter. Med. Eng. Phys. 21:601–608, 1999.
Pon, L.-S., M. Sun, and R. J. Sclabassi. The bi-directional spike detection in EEG using mathematical morphology and wavelet transform. In: 6th International Conference on Signal Processing, Vol. 2, 2002, pp. 1512–1515.
Racine, R. J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32:281–294, 1972.
Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66:846–850, 1971.
Sabesan, S., N. Chakravarthy, K. Tsakalis, P. Pardalos, and L. Iasemidis. Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques. J. Comb. Optim. 17:74–97, 2009.
Sabesan, S., L. Good, N. Chakravarthy, K. Tsakalis, P. M. Pardalos, and L. Iasemidis. Global optimization and spatial synchronization changes prior to epileptic seizures. In: Optimization in Medicine. New York: Springer, pp. 970–978, 2008.
Serra, J. Morphological filtering: an overview. Signal Process. 38:3–11, 1994.
Serra, J., and L. Vincent. An overview of morphological filtering. Circuits Syst. Signal Process. 11:47–108, 1992.
Sherwin, I. Interictal-ictal transition in the feline penicillin epileptogenic focus. Electroencephalogr. Clin. Neurophysiol. 45:525–534, 1978.
Shoeb, A., H. Edwards, J. Connolly, B. Bourgeois, S. T. Treves, and J. Guttag. Patient-specific seizure onset detection. Epilepsy Behav. 5:483–498, 2004.
Staley, K. J., A. White, and F. E. Dudek. Interictal Spikes: harbingers or causes of epilepsy? Neurosci. Lett. 497(3):247–250, 2011.
White, A., P. A. Williams, J. L. Hellier, S. Clark, F. E. Dudek, and K. J. Staley. EEG spike activity precedes epilepsy after kainate-induced status epilepticus. Epilepsia 51(3):371–383, 2010.
Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1:80–83, 1945.
Wilson, S. B., C. A. Turner, R. G. Emerson, and M. L. Scheuer. Spike detection II: automatic, perception-based detection and clustering. Clin. Neurophysiol. 110:404–411, 1999.
Xu, G., J. Wang, Q. Zhang, S. Zhang, and J. Zhu. A spike detection method in EEG based on improved morphological filter. Comput. Biol. Med. 37:1647–1652, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4