Christen, P., K. Ito, R. Muller, M. R. Rubin, D. W. Dempster, J. P. Bilezikian, and B. van Rietbergen. Patient-specific bone modelling and remodelling simulation of hypoparathyroidism based on human iliac crest biopsies. J. Biomech. 45(14):2411–2416, 2012.
Cody, D. D., G. J. Gross, F. J. Hou, H. J. Spencer, S. A. Goldstein, and D. P. Fyhrie. Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10):1013–1020, 1999.
Consensus development conference. Prophylaxis and treatment of osteoporosis. Am. J. Med. 90(1):107–110, 1991.
Cosmi, F. Morphology-based prediction of elastic properties of trabecular bone samples. Acta Bioeng. Biomech. 11(1):3–9, 2009.
Cowin, S. C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4(2):137–147, 1985.
Dall’Ara, E., B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, and D. Pahr. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52(1):27–38, 2013.
Dragomir-Daescu, D., J. Op Den Buijs, S. McEligot, Y. Dai, R. C. Entwistle, C. Salas, L. J. Melton, III, K. E. Bennet, S. Khosla, and S. Amin. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39(2):742–755, 2011.
Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9):1323–1341, 2012.
Geraets, W. G., L. J. van Ruijven, J. G. Verheij, P. F. van der Stelt, and T. M. van Eijden. Spatial orientation in bone samples and Young’s modulus. J. Biomech. 41(10):2206–2210, 2008.
Harrigan, T. P., and R. W. Mann. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19(3):761–767, 1984.
Kang, Y., K. Engelke, and W. A. Kalender. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5):586–598, 2003.
Kersh, M., P. Zysset, D. Pahr, U. Wolfram, D. Larsson, and M. Pandy. “Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 46(15):2659–2666, 2013.
Lenaerts, L., and G. H. van Lenthe. Multi-level patient-specific modelling of the proximal femur. A promising tool to quantify the effect of osteoporosis treatment. Philos. Trans. R. Soc. A. 367(1895):2079–2093, 2009.
Liu, Y., P. K. Saha, and Z. Xu. Quantitative characterization of trabecular bone micro-architecture using tensor scale and multi-detector CT imaging. Lect. Notes Comput. Sci. 15(1):124–131, 2012.
Matsuura, M., F. Eckstein, E. M. Lochmuller, and P. K. Zysset. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech. Model Mechan. 19:19, 2007.
Ohman, C., M. Baleani, E. Perilli, E. Dall’Ara, S. Tassani, F. Baruffaldi, and M. Viceconti. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J. Biomech. 40(11):2426–2433, 2007.
Pahr, D., and P. Zysset. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J. Biomech. 42(4):455–462, 2009.
Pahr, D. H., and P. K. Zysset. From high-resolution CT data to finite element models: development of an integrated modular framework. Comput. Methods Biomech. 12(1):45–57, 2009.
Pahr, D., J. Schwiedrzik, E. Dall’Ara, and P. Zysset. Clinical versus pre-clinical FE models for vertebral body strength predictions. J. Mech. Behav. Biomed. 12:S1751–S6161, 2012.
Pieper, S., M. Halle, and R. Kikinis. 3D SLICER. I S Biomed Imaging. Vol. 1, pp. 632–635, 2004.
Pieper, S., W. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC Kit: ITK, VTK, Pipelines, Grids and 3D Slicer as an Open Platform for the Medical Image Computing Community. I S Biomed Imaging, Vol. 1, pp. 698–701, 2006.
Ridler, T. W., and S. Calvard. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. B 8(8):630–632, 1978.
Rotter, M., A. Berg, H. Langenberger, S. Grampp, H. Imhof, and E. Moser. Autocorrelation analysis of bone structure. J. Magn. Reson. Imaging 14(1):87–93, 2001.
San Antonio, T., M. Ciaccia, C. Müller-Karger, and E. Casanova. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med. Eng. Phys. 34(7):914–919, 2012.
Scherf, H., and R. Tilgner. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am. J. Phys. Anthropol. 140(1):39–51, 2009.
Schulte, F. A., A. Zwahlen, F. M. Lambers, G. Kuhn, D. Ruffoni, D. Betts, D. J. Webster, and R. Muller. Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1):485–492, 2013.
Siris, E. S., P. D. Miller, E. Barrett-Connor, K. G. Faulkner, L. E. Wehren, T. A. Abbott, M. L. Berger, A. C. Santora, and L. M. Sherwood. Identification and fracture outcomes of undiagnosed low bone mineral density in postmeno-pausal women. JAMA 286(22):2815–2822, 2001.
Tabor, Z. On the equivalence of two methods of determining fabric tensor. Med. Eng. Phys. 31:1313–1322, 2009.
Tabor, Z. Anisotropic resolution biases estimation of fabric from 3D gray-level images. Med. Eng. Phys. 32:39–48, 2010.
Tabor, Z. Equivalence of mean intercept length and gradient fabric tensors—3D study. Med. Eng. Phys. 34(5):598–604, 2012.
Tabor, Z., and E. Rokita. Quantifying anisotropy of trabecular bone from gray-level images. Bone 40(4):966–972, 2007.
Trabelsi, N., and Z. Yosibash. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J. Biomed. Eng. 133(6):061001, 2011.
Varga, P. Prediction of Distal Radius Fracture Load Using HR-pQCT-Based Finite Element Analysis. Vienna: Vienna University of Technology, 2009.
Varga, P., and P. K. Zysset. Sampling sphere orientation distribution: an efficient method to quantify trabecular bone fabric on grayscale images. Med. Image Anal. 13(3):530–541, 2009.
Wald, M. J., B. Vasilic, P. K. Saha, and F. W. Wehrli. Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. Med. Phys. 34(3):1110–1120, 2007.
WHO. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Geneve: WHO, 1994.
Wolfram, U., B. Schmitz, F. Heuer, M. Reinehr, and H. J. Wilke. Vertebral trabecular main direction can be determined from clinical CT datasets using the gradient structure tensor and not the inertia tensor–a case study. J. Biomech. 42(10):1390–1396, 2009.
Zysset, P. K., and A. Curnier. An alternative model for anisotropic elasticity based on fabric tensor. Mech. Mater. 21:243–250, 1995.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4