A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-0983-y below:

Assessment of Transverse Isotropy in Clinical-Level CT Images of Trabecular Bone Using the Gradient Structure Tensor

References
  1. Christen, P., K. Ito, R. Muller, M. R. Rubin, D. W. Dempster, J. P. Bilezikian, and B. van Rietbergen. Patient-specific bone modelling and remodelling simulation of hypoparathyroidism based on human iliac crest biopsies. J. Biomech. 45(14):2411–2416, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cody, D. D., G. J. Gross, F. J. Hou, H. J. Spencer, S. A. Goldstein, and D. P. Fyhrie. Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10):1013–1020, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Consensus development conference. Prophylaxis and treatment of osteoporosis. Am. J. Med. 90(1):107–110, 1991.

    Article  Google Scholar 

  4. Cosmi, F. Morphology-based prediction of elastic properties of trabecular bone samples. Acta Bioeng. Biomech. 11(1):3–9, 2009.

    PubMed  Google Scholar 

  5. Cowin, S. C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4(2):137–147, 1985.

    Article  Google Scholar 

  6. Dall’Ara, E., B. Luisier, R. Schmidt, F. Kainberger, P. Zysset, and D. Pahr. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52(1):27–38, 2013.

    Article  PubMed  Google Scholar 

  7. Dragomir-Daescu, D., J. Op Den Buijs, S. McEligot, Y. Dai, R. C. Entwistle, C. Salas, L. J. Melton, III, K. E. Bennet, S. Khosla, and S. Amin. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 39(2):742–755, 2011.

  8. Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9):1323–1341, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Geraets, W. G., L. J. van Ruijven, J. G. Verheij, P. F. van der Stelt, and T. M. van Eijden. Spatial orientation in bone samples and Young’s modulus. J. Biomech. 41(10):2206–2210, 2008.

    Article  PubMed  CAS  Google Scholar 

  10. Harrigan, T. P., and R. W. Mann. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19(3):761–767, 1984.

    Article  CAS  Google Scholar 

  11. Kang, Y., K. Engelke, and W. A. Kalender. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5):586–598, 2003.

    Article  PubMed  Google Scholar 

  12. Kersh, M., P. Zysset, D. Pahr, U. Wolfram, D. Larsson, and M. Pandy. “Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 46(15):2659–2666, 2013.

    Article  PubMed  Google Scholar 

  13. Lenaerts, L., and G. H. van Lenthe. Multi-level patient-specific modelling of the proximal femur. A promising tool to quantify the effect of osteoporosis treatment. Philos. Trans. R. Soc. A. 367(1895):2079–2093, 2009.

    Google Scholar 

  14. Liu, Y., P. K. Saha, and Z. Xu. Quantitative characterization of trabecular bone micro-architecture using tensor scale and multi-detector CT imaging. Lect. Notes Comput. Sci. 15(1):124–131, 2012.

    Google Scholar 

  15. Matsuura, M., F. Eckstein, E. M. Lochmuller, and P. K. Zysset. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech. Model Mechan. 19:19, 2007.

    Google Scholar 

  16. Ohman, C., M. Baleani, E. Perilli, E. Dall’Ara, S. Tassani, F. Baruffaldi, and M. Viceconti. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J. Biomech. 40(11):2426–2433, 2007.

    Article  PubMed  Google Scholar 

  17. Pahr, D., and P. Zysset. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J. Biomech. 42(4):455–462, 2009.

    Article  PubMed  Google Scholar 

  18. Pahr, D. H., and P. K. Zysset. From high-resolution CT data to finite element models: development of an integrated modular framework. Comput. Methods Biomech. 12(1):45–57, 2009.

    Article  Google Scholar 

  19. Pahr, D., J. Schwiedrzik, E. Dall’Ara, and P. Zysset. Clinical versus pre-clinical FE models for vertebral body strength predictions. J. Mech. Behav. Biomed. 12:S1751–S6161, 2012.

    Google Scholar 

  20. Pieper, S., M. Halle, and R. Kikinis. 3D SLICER. I S Biomed Imaging. Vol. 1, pp. 632–635, 2004.

  21. Pieper, S., W. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC Kit: ITK, VTK, Pipelines, Grids and 3D Slicer as an Open Platform for the Medical Image Computing Community. I S Biomed Imaging, Vol. 1, pp. 698–701, 2006.

  22. Ridler, T. W., and S. Calvard. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. B 8(8):630–632, 1978.

    Article  Google Scholar 

  23. Rotter, M., A. Berg, H. Langenberger, S. Grampp, H. Imhof, and E. Moser. Autocorrelation analysis of bone structure. J. Magn. Reson. Imaging 14(1):87–93, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. San Antonio, T., M. Ciaccia, C. Müller-Karger, and E. Casanova. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med. Eng. Phys. 34(7):914–919, 2012.

    Google Scholar 

  25. Scherf, H., and R. Tilgner. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am. J. Phys. Anthropol. 140(1):39–51, 2009.

    Article  PubMed  Google Scholar 

  26. Schulte, F. A., A. Zwahlen, F. M. Lambers, G. Kuhn, D. Ruffoni, D. Betts, D. J. Webster, and R. Muller. Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1):485–492, 2013.

    Article  PubMed  Google Scholar 

  27. Siris, E. S., P. D. Miller, E. Barrett-Connor, K. G. Faulkner, L. E. Wehren, T. A. Abbott, M. L. Berger, A. C. Santora, and L. M. Sherwood. Identification and fracture outcomes of undiagnosed low bone mineral density in postmeno-pausal women. JAMA 286(22):2815–2822, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Tabor, Z. On the equivalence of two methods of determining fabric tensor. Med. Eng. Phys. 31:1313–1322, 2009.

    Article  PubMed  Google Scholar 

  29. Tabor, Z. Anisotropic resolution biases estimation of fabric from 3D gray-level images. Med. Eng. Phys. 32:39–48, 2010.

    Article  PubMed  Google Scholar 

  30. Tabor, Z. Equivalence of mean intercept length and gradient fabric tensors—3D study. Med. Eng. Phys. 34(5):598–604, 2012.

    Article  PubMed  Google Scholar 

  31. Tabor, Z., and E. Rokita. Quantifying anisotropy of trabecular bone from gray-level images. Bone 40(4):966–972, 2007.

    Article  PubMed  Google Scholar 

  32. Trabelsi, N., and Z. Yosibash. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J. Biomed. Eng. 133(6):061001, 2011.

    Google Scholar 

  33. Varga, P. Prediction of Distal Radius Fracture Load Using HR-pQCT-Based Finite Element Analysis. Vienna: Vienna University of Technology, 2009.

    Google Scholar 

  34. Varga, P., and P. K. Zysset. Sampling sphere orientation distribution: an efficient method to quantify trabecular bone fabric on grayscale images. Med. Image Anal. 13(3):530–541, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Wald, M. J., B. Vasilic, P. K. Saha, and F. W. Wehrli. Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. Med. Phys. 34(3):1110–1120, 2007.

    Article  PubMed  Google Scholar 

  36. WHO. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Geneve: WHO, 1994.

  37. Wolfram, U., B. Schmitz, F. Heuer, M. Reinehr, and H. J. Wilke. Vertebral trabecular main direction can be determined from clinical CT datasets using the gradient structure tensor and not the inertia tensor–a case study. J. Biomech. 42(10):1390–1396, 2009.

    Article  PubMed  Google Scholar 

  38. Zysset, P. K., and A. Curnier. An alternative model for anisotropic elasticity based on fabric tensor. Mech. Mater. 21:243–250, 1995.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4